Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f/ \(3xy\left(x+y\right)-\left(x+y\right)\left(x^2+y^2+2xy\right)+y^3=27\)
\(3x^2y+3xy^2-\left(x+y\right)\left(x+y\right)^2+y^3=27\)
\(3x^2y+3xy^3-\left(x+y\right)^3+y^3=27\)
\(3x^2y+3xy^3-\left(x^3+3x^2y+3xy^2+b^3\right)+y^3=27\)
\(-x^3=27\)
\(x=-3\)
6) c) x3 - x2 + x = 1
<=> x3 - x2 + x - 1 = 0
<=> (x3 - x2) + (x - 1) = 0
<=> x2 (x - 1) + (x - 1) = 0
<=> (x - 1) (x2 + 1) = 0
=> x - 1 = 0 hoặc x2 + 1 = 0
* x - 1 = 0 => x = 1
* x2 + 1 = 0 => x2 = -1 => x = -1
Vậy x = 1 hoặc x = -1
Bài 5:
a) Đặt \(A=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=3^{32}-1\)
\(\Rightarrow A=\frac{3^{32}-1}{8}\)
b) (7x+6)2 + (5-6x)2 - (10-12x)(7x+6)
=(7x+6)2 + (5-6x)2 - 2(5-6x)(7x+6)
\(=\left(7x+6-5+6x\right)^2\)
\(=\left(13x+1\right)^2\)
a)
=>x2+6x+9-x2-8x+4x+32-1=0
=>2x+40=0
=>2x=-40
=>x=-20
b ) cứ phân tích hết ra rồi rút gọn là ra
a) \(^{x^2+6x+9-x^2-8x+4x+32=1}\)
\(\Rightarrow2x+41=1\Rightarrow2x=42\Rightarrow x=21\)
\(a.4\left(x+2\right)-7\left(2x-1\right)+9\left(3x-4\right)=30\\ 4x+8-14x+7+27x-36=30\\ 17x+15=66\\ 17x=51\Rightarrow x=3\)
\(b.2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\\ =10x-16-12x+15=12x-16+11\\ -2x-1=12x-5\\ \Leftrightarrow-2x-12x=1-5\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{7}{2}\)
\(c.4x^2+3\left(2x^2+1\right)=2x\left(5x-7\right)\\ 4x^2+6x^2+3=10x^2-14x\\ 10x^2+3=10x^2-14x\\ \Leftrightarrow3=14x\\\Rightarrow x=\dfrac{3}{14}\)
\(d.x\left(x^2-7\right)=2x\left(\dfrac{1}{2}x^2+6\right)+8\\ x^3-7x=x^3+12x+8\\ \Leftrightarrow-7x=12x+8\\ \Leftrightarrow-7x-12x=8\\ \Leftrightarrow-19x=8\Rightarrow x=-\dfrac{8}{19}\)
a) (2x + 1)2 - 4(x + 2)2 = 99
=> 4x2 + 4x + 1 - 4(x2 + 4x + 4) = 99
=> 4x2 + 4x + 1 - 4x2 - 16x - 16 = 99
=> -12x = 114
=> x = -9,5
b) (x - 3)2 - (x - 4)(x + 8) = 1
=> x2 - 6x + 9 - (x2 + 4x - 32) = 1
=> x2 - 6x + 9 - x2 - 4x + 32 = 1
=> -10x = -40
=> x = 4
c) 3(x + 2)2 + (2x - 1)2 - 7(x - 3)(x + 3) = 36
=> 3(x2 + 4x + 4) + 4x2 - 4x + 1 - 7(x2 - 9) = 36
=> 3x2 + 12x + 12 + 4x2 - 4x + 1 - 7x2 + 63 = 36
=> 8x = -40
=> x = -5
a) ( 2x + 1 ) - 4( x + 2 )2 = 99
<=> 4x2 + 4x + 1 - 4( x2 + 4x + 4 ) = 99
<=> 4x2 + 4x + 1 - 4x2 - 16x - 16 = 99
<=> -12x - 15 = 99
<=> -12x = 114
<=> x = -114/12 = -19/2
b) ( x + 3 )2 - ( x - 4 )( x + 8 ) = 1
<=> x2 + 6x + 9 - ( x2 + 4x - 32 ) = 1
<=> x2 + 6x + 9 - x2 - 4x + 32 = 1
<=> 2x + 41 = 1
<=> 2x = -40
<=> x = -20
c) 3( x + 2 )2 + ( 2x - 1 )2 - 7( x + 3 )( x - 3 ) = 36
<=> 3( x2 + 4x + 4 ) + 4x2 - 4x + 1 - 7( x2 - 9 ) = 36
<=> 3x2 + 12x + 12 + 4x2 - 4x + 1 - 7x2 + 63 = 36
<=> 8x + 76 = 36
<=> 8x = -40
<=> x = -5
a) \(\left(x+2\right)^2-9=0\)
\(=>\left(x+2\right)^2-3^2=0\\ =>\left(x+2-3\right).\left(x+2+3\right)=0\)
\(=>\left(x-1\right).\left(x+5\right)=0\)
\(=>\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}}=>\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)
Vậy x= 1 hoặc x= -5
b) \(x^2-2x+1=25\)
\(=>x^2-2.x.x+1^2=25\)
\(=>\left(x-1\right)^2-25=0\\ =>\left(x-1\right)^2-5^2=0\)
\(=>\left(x-1-5\right).\left(x-1+5\right)=0\)
\(=>\left(x-6\right).\left(x+4\right)=0=>\orbr{\begin{cases}x-6=0\\x+4=0\end{cases}}\)
\(=>\orbr{\begin{cases}x=6\\x=-4\end{cases}}\)
Vậy x= 6 hoặc x= -4
c) \(4x\left(x-1\right)-\left(2x+5\right)\left(2x-5\right)=1\)
\(=>4x\left(x-1\right)-\left[\left(2x\right)^2-5^2\right]=1\)
\(=>4x\left(x-1\right)-4x^2+25-1=0\)
\(=>4x\left(x-1\right)-4x^2+24=0\)
\(=>4x\left(x-1\right)-\left(4x^2-24\right)=0\\ =>4x\left(x-1\right)-4\left(x^2-6\right)=0\)
..................... tắc ròi -.-"
d) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x^2+3\right)=15\)
\(=>x^3+27-x^3-3x=15\)
\(=>27-3x-15=0=>12-3x=0=>3\left(4-x\right)=0\)
Vì \(3>0=>4-x=0=>x=4\)
Vậy x= 4
e) \(3\left(x+2\right)^2+\left(2x+1\right)^2-7\left(x+3\right)\left(x-3\right)=28\)
\(=>3\left(x^2+2.x.2+2^2\right)+4x^2+4x+1-7\left(x^2-9\right)=28\)
\(=>3\left(x^2+4x+4\right)+4x^2+4x+1-7x^2+63=28\)
\(=>3x^2+12x+12+4x^2+4x+1-7x^2+63=28\)
\(=>16x+75=28=>16x=-47=>x=\frac{-47}{16}\)
Cậu có thể tham khảo bài làm trên đây ạ, chúc cậu học tốt :>'-'
a) ( 3x - 1 ) ( 2x + 7 ) - ( x + 1 ) ( 6x + 5 ) = 16
<=> 6x2 + 21x - 2x - 7 - ( 6x2 - 5x + 6x - 5) = 16
<=> 6x2 + 21x - 2x - 7 - ( 6x2 + x - 5 ) = 16
<=> 6x2+ 21x - 2x - 7 - 6x2 -x + 5 = 16
<=> 18x - 2 = 16
<=> 18x = 18
=> x = 1
Vậy....
a) \(\left(x+1\right)^2=3\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)^2-3\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
b) \(\left(2x-7\right)^3=8\left(7-2x\right)^2\)
\(\Leftrightarrow\left(2x-7\right)^3-8\left(2x-7\right)^2=0\)
\(\Leftrightarrow\left(2x-7\right)^2\left(2x-15\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(2x-7\right)^2=0\\2x-15=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=7\\2x=15\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=\frac{15}{2}\end{cases}}\)
a, \(\left(x+1\right)^2=3\left(x+1\right)\Leftrightarrow x^2+2x+1=3x+3\)
\(\Leftrightarrow x^2-x-2=0\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)
b, \(\left(2x-7\right)^3=8\left(7-2x\right)^2\)
\(\Leftrightarrow8x^3-116x^2+518x-735=0\Leftrightarrow\orbr{\begin{cases}x=3,5\\x=7,5\end{cases}}\)