Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{x+1}{x-4}>0\)
Thì sảy ra 2 trường hợp
Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4
Vậy x > 4
Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4
Vậy x < (-1) .
Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)
Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)
Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)
bạn ơi trả lời được câu này kông
( x + 1 ) + ( x - 3 ) + ( x + 5 ) + ............ + ( x +9) = 35
Bài 1:
a) (2x-3). (x+1) < 0
=>2x-3 và x+1 ngược dấu
Mà 2x-3<x+1 với mọi x
\(\Rightarrow\begin{cases}2x-3< 0\\x+1>0\end{cases}\)
\(\Rightarrow\begin{cases}x< \frac{3}{2}\\x>-1\end{cases}\)\(\Rightarrow-1< x< \frac{3}{2}\)
b)\(\left(x-\frac{1}{2}\right)\left(x+3\right)>0\)
\(\Rightarrow x-\frac{1}{2}\) và x+3 cùng dấu
Xét \(\begin{cases}x-\frac{1}{2}>0\\x+3>0\end{cases}\)\(\Rightarrow\begin{cases}x>\frac{1}{2}\\x>-3\end{cases}\)
Xét \(\begin{cases}x-\frac{1}{2}< 0\\x+3< 0\end{cases}\)\(\Rightarrow\begin{cases}x< \frac{1}{2}\\x< -3\end{cases}\)
=>....
Bài 2:
\(S=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{999.1001}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{999}-\frac{1}{1001}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{1001}\right)\)
\(=\frac{1}{2}\cdot\frac{998}{3003}\)
\(=\frac{499}{3003}\)
Chỗ dấu "..." bạn không cần ghi.Mình viết vậy cho dễ nhìn. Bài này có một lời giải khá độc đáo trong sách nâng cao của mình.
a) Số thừa số âm ở VT chẵn.
Mà \(x-\frac{2}{5}< x+\frac{3}{7}< x+\frac{3}{4}\) nên
\(\orbr{\begin{cases}x-\frac{2}{5}>0\\x+\frac{3}{7}< 0..và...x+\frac{3}{4}>0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x>\frac{2}{5}\\x< -\frac{3}{7}...và...x>-\frac{3}{4}\end{cases}\Leftrightarrow\orbr{\begin{cases}x>\frac{2}{5}\\-\frac{3}{4}< x< -\frac{3}{7}\end{cases}}}\)
1.
a) \(x\in\left\{4;5;6;7;8;9;10;11;12;13\right\}\)
b) x=0
d) \(x=\frac{-1}{35}\) hoặc \(x=\frac{-13}{35}\)
e) \(x=\frac{2}{3}\)
A,\(\left(x+\frac{2}{5}\right).\left(x-3\right)< 0\)B,\(\left(x-\frac{2}{5}\right).x+\frac{3}{7}>0\)
a, \(\left(x-3\right)\left(x+2\right)>0\)
th1 : \(\hept{\begin{cases}x-3>0\\x+2>0\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x>-2\end{cases}\Rightarrow}x>3}\)
th2 : \(\hept{\begin{cases}x-3< 0\\x+2< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x< -3\end{cases}\Rightarrow}x< -3}\)
vậy x > 3 hoặc x < -3
b, \(\left(x+5\right)\left(x+1\right)< 0\)
th1 : \(\hept{\begin{cases}x+5>0\\x+1< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-5\\x< -1\end{cases}\Rightarrow x\in\left\{-4;-3;-2\right\}}}\)
th2 : \(\hept{\begin{cases}x+5< 0\\x+1>0\end{cases}\Rightarrow\hept{\begin{cases}x< -5\\x>-1\end{cases}\Rightarrow}x\in\varnothing}\)
vậy x = -4; -3; -2
c, \(\frac{x-4}{x+6}\le0\)
xét \(\frac{x-4}{x+6}=0\)
\(\Rightarrow x-4=0;x\ne-6\)
\(\Rightarrow x=4\ne-6\)
xét \(\frac{x-4}{x+5}< 0\)
th1 : \(\hept{\begin{cases}x-4< 0\\x+5>0\end{cases}\Rightarrow\hept{\begin{cases}x< 4\\x>-5\end{cases}\Rightarrow}x\in\left\{3;2;1;0;-1;-2;-3;-4\right\}}\)
th2 : \(\hept{\begin{cases}x-4>0\\x+5< 0\end{cases}\Rightarrow\hept{\begin{cases}x>4\\x< -5\end{cases}\Rightarrow x\in\varnothing}}\)
d tương tự c
\(\frac{\left(x-6\right)}{x-7}\ge0\)
Th1: x - 6 < 0
<=> x - 6 + 6 < 0 + 6
<=> x - 6 + 6 > 0 + 6
=> x < 6
Th2: x - 7
<=> x - 7 + 7 < 0 + 7
<=> x - 7 + 7 > 0 + 7
=> x > 7
=> x < 6 hoặc x > 7
a, TH1 : \(\hept{\begin{cases}x-\frac{1}{3}>0\\x+\frac{2}{5}>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>\frac{1}{3}\\x>-\frac{2}{5}\end{cases}\Leftrightarrow}x>\frac{1}{3}}\)
TH2 : \(\hept{\begin{cases}x-\frac{1}{3}< 0\\x+\frac{2}{5}< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{1}{3}\\x< -\frac{2}{5}\end{cases}\Leftrightarrow x< -\frac{2}{5}}\)
Vậy x > 1/3 ; x < -2/5
b, Vì \(x+1>x+\frac{3}{5}\)
nên \(\hept{\begin{cases}x+1>0\\x+\frac{3}{5}< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-1\\x< -\frac{3}{5}\end{cases}\Leftrightarrow-1< x< -\frac{3}{5}}}\)
\(\left(x-\frac{1}{3}\right)\left(x+\frac{2}{5}\right)>0\)
\(\orbr{\begin{cases}x>\frac{1}{3}\\x< -\frac{2}{5}\end{cases}}\)
<cùng dương, cùng âm>