Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,(x-7)x+1-(x-7)x+11=0
=>(x-7)x+1.[1-(x-7)10]=0
=>(x-7)x+1=0
=>x-7=0
=>x=7
hoặc 1-(x-7)10=1
=>(x-7)10=1
=>x-7=-1;1
=>x=8;6
vậy x=6;7;8
b,(x-1)2=36/49
=>x-1=6/7;-6/7
=>x=13/7;1/7
vậy x=1/7;13/7
cách 1:=> (x - 7)^(x+1)= (x-7)^(x+11)
TH1: x-7=0 => x=7 => 0^8=0^18 (TM)
TH2: x-7=1 => x=8 (TM)
TH3: x khác 7 và 8 => x+1=x+11 => vô lý => loại
KL: x = 7 hoặc x=8
( x-7)^( x+1) - ( x-7)^(x+11) = 0
( x-7)^( x+1) - ( x-7)^(x+1)*x^10 = 0
( x-7)^( x+1) (1-x^10) = 0
tới đây dễ òi
a. \(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|\left(-3,2\right)+\frac{2}{5}\right|\)\(\Leftrightarrow\left|x-\frac{1}{3}\right|=\left|-\frac{16}{5}+\frac{2}{5}\right|-\frac{4}{5}\)\(\Leftrightarrow\left|x-\frac{1}{3}\right|=\left|-\frac{14}{5}\right|-\frac{4}{5}\)\(\Leftrightarrow\left|x-\frac{1}{3}\right|=\frac{14}{5}-\frac{4}{5}\)\(\Leftrightarrow\left|x-\frac{1}{3}\right|=2\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{3}=2\\x-\frac{1}{3}=-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{3}\\x=-\frac{5}{3}\end{cases}.}\)
Vậy \(x\in\left\{-\frac{5}{3};\frac{7}{3}\right\}.\)
b. \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)\(\Leftrightarrow\left(x-7\right)^{x+1}-\left(x-7\right)^{x+1}\times\left(x-7\right)^{10}=0\)\(\Leftrightarrow\left(x-7\right)^{x+1}\left[1-\left(x-7\right)^{10}\right]=0\Leftrightarrow\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}.}\)Xét 2 trường hợp:
- \(\left(x-7\right)^{x+1}=0\)\(\Leftrightarrow x-7=0\Leftrightarrow x=7.\)
- \(1-\left(x-7\right)^{10}=0\Leftrightarrow\left(x-7\right)^{10}=1\Leftrightarrow\left(x-7\right)^{10}=\left(\pm1\right)^{10}\)\(\Leftrightarrow\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=8\\x=6\end{cases}.}}\)
Vậy \(x\in\left\{6;7;8\right\}.\)
bạn ơi trả lời được câu này kông
( x + 1 ) + ( x - 3 ) + ( x + 5 ) + ............ + ( x +9) = 35
a,\(\left(x-\frac{7}{9}\right)^3=\left(\left(\frac{2}{3}\right)^2\right)^3\)
\(x-\frac{7}{9}=\frac{4}{9}\)
\(x=\frac{4}{9}+\frac{7}{9}\)
\(x=\frac{11}{9}\)
Vậy x=\(\frac{11}{9}\)
A) \(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}\)
\(=\frac{\left(x+10\right)-\left(x+3\right)}{\left(x+3\right)\left(x+10\right)}+\frac{\left(x+21\right)-\left(x+10\right)}{\left(x+10\right)\left(x+21\right)}+\frac{\left(x+34\right)-\left(x+21\right)}{\left(x+21\right)\left(x+34\right)}\)
\(=\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}\)
\(=\frac{1}{x+3}-\frac{1}{x+34}\)
\(=\frac{\left(x+34\right)-\left(x+3\right)}{\left(x+3\right)\left(x+34\right)}\)\(=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Rightarrow\left(x+34\right)-\left(x+3\right)=x\)
\(\Rightarrow x=31\)
Vậy, x = 31
Bạn áp dụng: \(\frac{k}{x\cdot\left(x+k\right)}=\frac{1}{x}-\frac{1}{x+k}\) với \(x,k\inℝ;x\ne0;x\ne-k\)
Chứng minh: \(\frac{1}{x}-\frac{1}{x+k}=\frac{x+k}{x\left(x+k\right)}-\frac{x}{x\left(x+k\right)}=\frac{x+k-x}{x\left(x+k\right)}=\frac{k}{x\left(x+k\right)}\)
a,(x-7)x+1-(x-7)x+11=0
=>(x-7)x+1.[1-(x-7)10]=0
=>(x-7)x+1=0
=>x-7=0
=>x=7
hoặc 1-(x-7)10=1
=>(x-7)10=1
=>x-7=-1;1
=>x=8;6
vậy x=6;7;8
b,(x-1)2=36/49
=>x-1=6/7;-6/7
=>x=13/7;1/7
vậy x=1/7;13/7