Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Tính
a.\(\dfrac{7}{23}\left[(-\dfrac{8}{6})-\dfrac{45}{18}\right]=\dfrac{7}{23}.-\dfrac{12}{6}=-\dfrac{7}{6}\)
b.\(\dfrac{1}{5}\div\dfrac{1}{10}-\dfrac{1}{3}(\dfrac{6}{5}-\dfrac{9}{4})=2-(-\dfrac{7}{20})=\dfrac{47}{20}\)
c.\(\dfrac{3}{5}.(-\dfrac{8}{3})-\dfrac{3}{5}\div(-6)=-\dfrac{3}{2}\)
d.\(\dfrac{1}{2}.(\dfrac{4}{3}+\dfrac{2}{5})-\dfrac{3}{4}.(\dfrac{8}{9}+\dfrac{16}{3})=-\dfrac{19}{5}\)
e.\(\dfrac{6}{7}\div(\dfrac{3}{26}-\dfrac{3}{13})+\dfrac{6}{7}.(\dfrac{1}{10}-\dfrac{8}{5})=-\dfrac{61}{7}\)
Bài 2
a.\(1^2_5x+\dfrac{3}{7}=\dfrac{4}{5}\)
\(x=\dfrac{13}{49}\)
b.\(\left|x-1,5\right|=2\)
Xảy ra 2 trường hợp
TH1
\(x-1,5=2\)
\(x=3,5\)
TH2
\(x-1,5=-2\)
\(x=-0,5\)
Vậy \(x=3,5\) hoặc \(x=-0,5\) .
Ngại làm quá trời ơi,lần sau bn tách ra nhá làm vậy mỏi tay quá.
h) \(5^x+5^{x+2}=650\)
\(\Leftrightarrow5^x+5^x.5^2=650\)
\(\Leftrightarrow5^x\left(1+25\right)=650\)
\(\Leftrightarrow5^x.26=650\)
\(\Leftrightarrow5^x=25\)
\(\Leftrightarrow x=2\)
haizzz,đăng ít thôi,chứ nhìn hoa mắt quá =.=
bây định làm j ở chỗ này vậy??? có j ib ns vs nhao chớ sao ns ở đây
a/ \(\dfrac{x}{9}=\dfrac{16}{x}\)
\(\Leftrightarrow x^2=9.16\)
\(\Leftrightarrow x^2=144\)
\(\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-12\end{matrix}\right.\)
Vậy ...
b/ \(x^3+27=0\)
\(\Leftrightarrow x^3=-27\)
\(\Leftrightarrow x^3=\left(-3\right)^3\)
\(\Leftrightarrow x=-3\)
Vậy ...
c/ \(\left|x\left(x^2-\dfrac{5}{4}\right)=x\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}x\left(x^2-\dfrac{5}{4}\right)=x\\x\left(x^2-\dfrac{5}{4}\right)=-x\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^3-\dfrac{5}{4}x=x\\x^3-\dfrac{5}{4}x=-x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^3-\left(\dfrac{5}{4}x+x\right)=0\\x^3-\left(\dfrac{5}{4}x-x\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^3-\dfrac{9}{4}x=0\\x^3-\dfrac{1}{4}x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\left(x^2-\dfrac{9}{4}\right)=0\\x\left(x^2-\dfrac{1}{4}\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=0\\x^2-\dfrac{9}{4}=0\end{matrix}\right.\\\left[{}\begin{matrix}x=0\\x^2-\dfrac{1}{4}=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=0\\\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\\\left[{}\begin{matrix}x=0\\\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)
Vậy ...
c/ Với mọi x ta có :
\(\left|x-5\right|=\left|5-x\right|\)
\(\Leftrightarrow\left|x+3\right|+\left|x-5\right|=\left|x+3\right|+\left|5-x\right|\)
\(\Leftrightarrow\left|x+3\right|+\left|5-x\right|\ge\left|\left(x+3\right)+\left(5-x\right)\right|\)
\(\Leftrightarrow\left|x+3\right|+\left|5-x\right|\ge\left|8\right|\)
\(\Leftrightarrow\left|x+3\right|+\left|5-x\right|\ge8\)
Dấu "=" xảy ra khi :
\(\left(x+3\right)\left(5-x\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3\ge0\\5-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3\le0\\5-x\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-3\\5\ge x\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-3\\5\le x\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}-3\le x\le5\\x\in\varnothing\end{matrix}\right.\)
Vậy ...
1: \(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{8}\right)^6\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{4x}=\left(\dfrac{1}{2}\right)^{18}\)
=>4x=18
hay x=9/2
2: \(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{8}\right)^{36}\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{4x}=\left(\dfrac{1}{2}\right)^{108}\)
=>4x=108
hay x=27
3: \(\left(\dfrac{1}{81}\right)^x=\left(\dfrac{1}{27}\right)^4\)
\(\Leftrightarrow\left(\dfrac{1}{3}\right)^{4x}=\left(\dfrac{1}{3}\right)^{12}\)
=>4x=12
hay x=3
Bài 2:
a: =>x^2=60
=>\(x=\pm2\sqrt{15}\)
b: =>2^2x+3=2^3x
=>3x=2x+3
=>x=3
c: \(\Leftrightarrow\sqrt{\dfrac{1}{2}x-2}\cdot\dfrac{1}{2}=1\)
\(\Leftrightarrow\sqrt{\dfrac{1}{2}x-2}=2\)
=>1/2x-2=4
=>1/2x=6
=>x=12
a: TH1: x>=0
=>x+x=1/3
=>x=1/6(nhận)
TH2: x<0
Pt sẽ là -x+x=1/3
=>0=1/3(loại)
b: \(\Leftrightarrow\left\{{}\begin{matrix}x>=0\\x^2-x-2=0\end{matrix}\right.\Leftrightarrow x=2\)
c: \(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{1}{x-3}+\dfrac{1}{x-3}-\dfrac{1}{x-8}+\dfrac{1}{x-8}-\dfrac{1}{x-20}-\dfrac{1}{x-20}=\dfrac{-3}{4}\)
\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{2}{x-20}=\dfrac{-3}{4}\)
\(\Leftrightarrow\dfrac{x-20-2x+2}{\left(x-1\right)\left(x-20\right)}=\dfrac{-3}{4}\)
\(\Leftrightarrow-3\left(x^2-21x+20\right)=4\left(-x-18\right)\)
\(\Leftrightarrow3x^2-63x+60=4x+72\)
=>3x^2-67x-12=0
hay \(x\in\left\{22.51;-0.18\right\}\)
a) ( x + 5 )3 = -64
x + 5 = - 4
x = - 4 - 5
x = -9
b) (2x - 3)2=9
2x - 3 = 3
2x = 3+3
2x = 6
x = 6 : 2
x = 3
e) \(\dfrac{8}{2x}=4\)
=> 4 . 2x = 8
8x =8
x = 8 : 8
x = 1
g) \(\left(\dfrac{1}{2}\right)^{2x-1}=\dfrac{1}{8}\)
\(\left(\dfrac{1}{2}\right)^{2x}:\left(\dfrac{1}{2}\right)^1=\dfrac{1}{8}\)
\(\left(\dfrac{1}{2}\right)^{2x}:\dfrac{1}{2}=\dfrac{1}{8}\)
\(\left(\dfrac{1}{2}\right)^{2x}=\dfrac{1}{8}.\dfrac{1}{2}\)
\(\left(\dfrac{1}{2}\right)^{2x}=\dfrac{1}{16}\)
\(\left(\dfrac{1}{2}\right)^{2x}=\left(\dfrac{1}{2}\right)^{2.2}\)
=> x = 2
h) \(\left(\dfrac{1}{2}\right)^2.x=\left(\dfrac{1}{2}\right)^5\)
\(\dfrac{1}{4}.x=\dfrac{1}{32}\)
x = \(\dfrac{1}{32}:\dfrac{1}{4}\)
x = \(\dfrac{1}{8}\)
i) \(\left(\dfrac{-1}{3}\right)x=\dfrac{1}{81}\)
\(x=\dfrac{1}{81}:\left(\dfrac{-1}{3}\right)\)
\(x=\dfrac{-1}{27}\)
a) (x + 5)3 = -64
=> (x + 5)3 = (-4)3
x + 5 = -4
x = -4 - 5
x = -9
b) (2x - 3)2 = 9
=> (2x - 3)2 = (\(\pm\)3)2
=> 2x - 3 = 3 hoặc 2x - 3 = -3
*2x - 3 = 3
2x = 3 + 3
2x = 9
x = \(\dfrac{9}{2}\)
*2x - 3 = -3
2x = -3 + 3
2x = 0
x = 0 : 2
x = 0
Vậy x \(\in\left\{\dfrac{9}{2};0\right\}\)
c) \(\dfrac{x}{\dfrac{4}{2}}=\dfrac{4}{\dfrac{x}{2}}\)
=> \(x.\dfrac{x}{2}=4.\dfrac{4}{2}\)
\(\dfrac{x}{2}=8\)
x = 8 : 2
x = 4
d) \(\dfrac{-32}{\left(-2\right)^n}=4\)
\(\Rightarrow\dfrac{\left(-2\right)^5}{\left(-2\right)^n}=\left(-2\right)^2\)
=> (-2)n . (-2)2= (-2)5
(-2)n = (-2)5 : (-2)2
(-2)n = (-2)3
Vậy n = 3
e) \(\dfrac{8}{2x}=4\)
=> 2x . 4 = 8
2x = 8 : 4
2x = 2
x = 1
g) \(\left(\dfrac{1}{2}\right)^{2x-1}=\dfrac{1}{8}\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^{2x-1}=\left(\dfrac{1}{2}\right)^3\)
2x - 1 = 3
2x = 3 + 1
2x = 4
x = 4 : 2
x = 2
h) \(\left(\dfrac{1}{2}\right)^2.x=\left(\dfrac{1}{2}\right)^5\)
\(x=\left(\dfrac{1}{2}\right)^5:\left(\dfrac{1}{2}\right)^2\)
\(x=\left(\dfrac{1}{2}\right)^3\)
\(x=\dfrac{1}{8}\)
i) \(\left(\dfrac{-1}{3}\right)x=\dfrac{1}{81}\)
\(x=\dfrac{1}{81}:\left(\dfrac{-1}{3}\right)\)
\(x=\left(\dfrac{-1}{3}\right)^4:\left(\dfrac{-1}{3}\right)\)
\(x=\left(\dfrac{-1}{3}\right)^3\)
\(x=\dfrac{-1}{27}\).
a,\(\left(5x-1\right)^6=729\)
\(\left(5x-1\right)^6=3^6\)
\(5x-1=3\)
\(5x=4\)
\(x=\dfrac{4}{5}\)
b Ta có \(8=2^3\),\(25=5^2\)
Mà \(\dfrac{8}{25}=\dfrac{2^x}{5^{x-1}}\)
=> \(2^3=2^x,5^2=5^{x-1}\)
=> x=3
c. \(^{ }\left(2x+3\right)^2=\dfrac{9}{121}\)
=> \(\left(2x+3\right)^2=\left(\dfrac{3}{11}\right)^2\)
=> 2x +3 = \(\dfrac{3}{11}\) hoặc 2x+3 = \(\dfrac{-3}{11}\)
=> x= \(\dfrac{-15}{11}\) hoặc x = \(\dfrac{-18}{11}\)
d. \(\left(2x-1\right)^3=\dfrac{-8}{27}\)
=> \(\left(2x-1\right)^3=\left(\dfrac{-2}{3}\right)^3\)
=> 2x-1 = \(\dfrac{-2}{3}\)
=> x= \(\dfrac{1}{6}\)
a) (-5/9)^10 : x = (-5/9)^8
=> x = (-5/9)^10 : (-5/9)^8
=> x = (-5/9)^10-8 = (-5/9)^2
=> x = 25/81
b ) x : (-5/9)^8 = (-9/5)^8
=> x = (-9/5)^8 . (-5/9)^8
=> x = ( (-9)^8.(-5)^8 )/(5^8 . 9^8 )
=> x = 1
C) x^3 = -8 =(-2)^3
=> x = -2
a) (-5/9)¹⁰ : x = (-5/9)⁸
x = (-5/9)¹⁰ : (-5/9)⁸
x = (-5/9)²
x = 25/81
b) x : (-5/9)⁸ = (-9/5)⁸
x = (-9/5)⁸ . (-5/9)⁸
x = [-9/5 . (-5/9)]⁸
x = 1⁸
x = 1
c) x³ = -8
x³ = (-2)³
x = -2