Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ => 6x3 + x2 - 2x = 0
=> x (6x2 + x - 2) = 0
=> x (6x2 + 4x - 3x - 2) = 0
=> x [ 2x (3x + 2) - (3x + 2) ] =0
=> x (3x + 2) (2x - 1) = 0
=> x = 0
hoặc 3x + 2 = 0 => 3x = -2 => x = -2/3
hoặc 2x - 1 = 0 => 2x = 1 => x = 1/2
Vậy x = 0; x = -2/3 ; x = 1/2
Câu b,c,d tương tự
Ta có:
a) \(x^2-49=0\Leftrightarrow x^2=49\)
\(\Leftrightarrow\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)
b) \(2x+3-5\left(x+3\right)=0\Leftrightarrow2x+3-5x-15=0\)
\(\Leftrightarrow-3x-12=0\Leftrightarrow x=-4\)
c) \(x^2-2x-15=0\Leftrightarrow\left(x-1\right)^2-4^2=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=5\\x=-3\end{cases}}\)
a) \(x^2-49=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{49}=7\\-\sqrt{49}=-7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)
b) 2x + 3 - 5(x + 3) = 0
<=> 2x + 3 - 5x = 0 - 3
<=> 2x - 15 = -3
<=> 2x = -3 + 15
<=> 2x = -12
<=> x = -4
Bài 4 : Tìm x biết:
a, 4x2 - 49 = 0
\(\Leftrightarrow\) (2x)2 - 72 = 0
\(\Leftrightarrow\) (2x - 7)(2x + 7) = 0
\(\Leftrightarrow\left\{{}\begin{matrix}2x-7=0\\2x+7=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
b, x2 + 36 = 12x
\(\Leftrightarrow\) x2 + 36 - 12x = 0
\(\Leftrightarrow\) x2 - 2.x.6 + 62 = 0
\(\Leftrightarrow\) (x - 6)2 = 0
\(\Leftrightarrow\) x = 6
e, (x - 2)2 - 16 = 0
\(\Leftrightarrow\) (x - 2)2 - 42 = 0
\(\Leftrightarrow\) (x - 2 - 4)(x - 2 + 4) = 0
\(\Leftrightarrow\) (x - 6)(x + 2) = 0
\(\Leftrightarrow\left\{{}\begin{matrix}x-6=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\x=-2\end{matrix}\right.\)
f, x2 - 5x -14 = 0
\(\Leftrightarrow\) x2 + 2x - 7x -14 = 0
\(\Leftrightarrow\) x(x + 2) - 7(x + 2) = 0
\(\Leftrightarrow\) (x + 2)(x - 7) = 0
\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=7\end{matrix}\right.\)
a) (3x + 4)2 - (3x - 1).(3x + 1) = 49
=> (3x + 4).3x + (3x + 4).4 - (9x2 - 1) = 49
=> 9x2 + 12x + 12x + 16 - 9x2 + 1 = 49
=> 24x + 17 = 49
=> 24x = 49 - 17
=> 24x = 32
=> \(x=\frac{32}{24}=\frac{4}{3}\)
Vậy \(x=\frac{4}{3}\)
b) (2x + 1)2 - (x - 1)2 = 0
=> (2x + 1 - x + 1).(2x + 1 + x - 1) = 0
=> (x + 2).3x = 0
=> (x + 2).x = 0
\(\Rightarrow\left[\begin{array}{nghiempt}x+2=0\\x=0\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}x=-2\\x=0\end{array}\right.\)
Vậy \(\left[\begin{array}{nghiempt}x=-2\\x=0\end{array}\right.\)
a) (x - 4)2 - 36 = 0
=> (x - 4)2 = 36
=> x - 4 = 6 hoặc x - 4 = -6
=> x = 10 hoặc x = -2
b) hình như sai đề bn ạ
c) x(x - 5) - 4x + 20 = 0
=> x(x - 5) - 4(x - 5) = 0
=> (x - 5)(x - 4) = 0
=> x - 5 = 0 hoặc x - 4 = 0
=> x = 5 hoặc x = 4
\(\left(x-4\right)^2-36=0\)
\(\Leftrightarrow\left(x-4\right)^2=0+36\)
\(\Leftrightarrow\left(x-4\right)^2=36\)
\(\Leftrightarrow\left(x-4\right)^2=\pm\sqrt{36}\)
\(\Leftrightarrow\left(x-4\right)=\pm6\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-4=6\\x-4=-6\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=10\\x=-2\end{array}\right.\)
Vậy \(x\in\left\{10;-2\right\}\)
a) \(\Leftrightarrow x^2-5x-2x+10=0\)
\(\Leftrightarrow x\left(x-5\right)-x\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=2\end{cases}}}\)
Vậy \(x=5\)hoặc \(x=2\)
b) \(\Leftrightarrow\left(6x\right)^2-7^2=0\)
\(\Leftrightarrow\left(6x+7\right)\left(6x-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}6x=-7\\6x=7\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{-7}{6}\\x=\frac{7}{6}\end{cases}}\)
Vậy \(x=\frac{-7}{6}\)hoặc \(x=\frac{7}{6}\)
a, x2-7x+10=0
<=> x2-2x-5x+10=0
<=> x.(x-2)-5.(x-2)=0
<=> (x-2).(x-5)=0
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=5\end{cases}}}\)
b, 36x2-49=0
<=> (6x)2-72=0
<=> (6x-7).(6x+7)=0
\(\Leftrightarrow\orbr{\begin{cases}6x-7=0\\6x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{6}\\x=-\frac{7}{6}\end{cases}}\)
a) \(5x\left(x+4\right)-x\left(5x+1\right)=0\)
\(\Leftrightarrow x\left[5\left(x+4\right)-5x-1\right]=0\)
\(\Leftrightarrow x\left(5x+20-5x-1\right)=0\Leftrightarrow x=0\)
b) \(3x\left(5-x\right)+4\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(4-3x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=\frac{4}{3}\end{cases}}\)
c) \(x\left(x-3\right)+4x-12=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-4\end{cases}}\)
d) \(x^2-36=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)
e) \(x^2+3x+1=2\)
\(\Leftrightarrow x^2+3x+1-2=0\)
\(\Leftrightarrow x^2+3x-1=0\)
\(\Leftrightarrow x^2+3x+\frac{3}{2}-\frac{5}{2}=0\)
\(\Leftrightarrow\left(x+\frac{3}{2}\right)^2-\frac{5}{2}=0\)
\(\Leftrightarrow\left(x+\frac{3}{2}+\frac{\sqrt{5}}{\sqrt{2}}\right)\left(x+\frac{3}{2}-\frac{\sqrt{5}}{\sqrt{2}}\right)=0\)
Còn lại ........... Tự lm nất nha
\(36x^2-49=0\)
\(\Leftrightarrow36x^2=49\)
\(\Leftrightarrow x=\sqrt{\dfrac{49}{36}}=\dfrac{7}{6}\)
Vậy: \(x=\dfrac{7}{6}\)
\((6x)^2-7^2=0\)
(6x-7)(6x+7)=0
Th1 6x-7=0
X=7/6
Th2 6x+7=0
X=-7/6
Pt có tập nghiệm S=7/6;-7/6