Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)
Ta có: (1/2x - 5)20 \(\ge\)0 \(\forall\)x
(y2 - 1/4)10 \(\ge\)0 \(\forall\)y
=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)0 \(\forall\)x;y
Theo (1) => ko có giá trị x;y t/m
Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0
=> (x - 7)x + 1.[1 - (x - 7)10] = 0
=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)
=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)
Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)0 \(\forall\)x
=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x
=> A \(\ge\)-1 \(\forall\)x
Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6
Vậy Min A = -1 tại x = -1/6
b) Ta có: -(4/9x - 2/5)6 \(\le\)0 \(\forall\)x
=> -(4/9x - 2/15)6 + 3 \(\le\)3 \(\forall\)x
=> B \(\le\)3 \(\forall\)x
Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10
vậy Max B = 3 tại x = 3/10
Bài 1:
Đề sai bạn ơi, phải là A(x)=x3-2x2+x-5
a, \(A\left(x\right)+B\left(x\right)=x^3-2x^2+x-5-x^3+2x^2+3x-9\)\(=4x-16\)
\(A\left(x\right)-B\left(x\right)=x^3-2x^2+x-5+x^3-2x^2-3x+9\)\(=2x^3-4x^2-2x+4\)
b, \(A\left(x\right)+B\left(x\right)=4x-16=4\left(x-4\right)\)\(\Rightarrow x=4\)
Vậy nghiệm của A(x)+B(x) là 4
Bài 2:
a, \(C\left(x\right)=-8x^4+5x^4+2x^3-4x^3+x^2+x+5\)\(=-3x^4-2x^3+x^2+x+5\)
\(D\left(x\right)=3,5+x^4-4x^3-4x^3+7-2x^4-3x^5\)\(=-3x^5+x^4-2x^4-4x^3-4x^3+3.5+7\)
\(=-3x^5-x^4-8x^3+10,5\)
b, \(C\left(x\right)+D\left(x\right)=\)\(-3x^4-2x^3+x^2+x+5\)\(-3x^5-x^4-8x^3+10,5\)\(=-3x^5-4x^4-10x^3+x^2+x+15,5\)
\(Q\left(x\right)=\)\(C\left(x\right)-D\left(x\right)=\)\(-3x^4-2x^3+x^2+x+5\)\(+3x^5+x^4+8x^3-10,5\)
\(=3x^5-2x^4+6x^3+x^2+x-5,5\)
c, \(D\left(x\right)=\)\(-3x^5-x^4-8x^3+10,5\)(not ra)
1, \(\left(x-4\right)^2-\left(2x+1\right)^2=\left(x-4-2x-1\right)\left(x-4+2x+1\right)=-3\left(x+5\right)\left(x-1\right).\)
\(\orbr{\begin{cases}x+5=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=1\end{cases}}}\)(mấy cái này áp dụng hàng đẳng thức lớp 8 mới hok)
2,\(x^3+x^2-4x-4=\left(x-2\right)\left(x^2+3x+2\right)=\left(x-2\right)\left(x+1\right)\left(x+2\right)\)
\(\orbr{\begin{cases}x=\mp2\\\end{cases}}x=-1\)
tương tụ lm tiếp nhe buồn ngủ quá rồi !
ta lập bảng xét dấu, sau khi lập xong , ta xét từng trường hợp là được ( câu a)
Có: (2x-4)x+1=(2x-4)x+5
<=> (2x-4)x+1 - (2x-4)x+5=0
<=> (2x-4)x+1\([1-\left(2x-4\right)^4]=0\)
<=> \(\left[{}\begin{matrix}\left(2x-4\right)^{x+1}=0\\1-\left(2x-4\right)^4=0\end{matrix}\right.< =>\left[{}\begin{matrix}2x-4=0\\\left(2x-4\right)^4=1\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}2x=4\\2x-4=1hoặc2x-4=-1\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x=2\\2x=5hoặc2x=3\end{matrix}\right.< =>\left[{}\begin{matrix}x=2\\x=\dfrac{5}{2};x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy x\(\in\left\{2;\dfrac{5}{2};\dfrac{3}{2}\right\}\)
ý b làm tương tự