K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2017

a, \(2\left(x+5\right)-x^2-5x=0\)

\(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=0\)

\(\Rightarrow\left(x+5\right)\left(2-x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+5=0\\2-x=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=5\\x=2\end{cases}}\)

24 tháng 8 2017

a)x=2

b)x=-1

c)x=\(\frac{1}{2}=0.5\)

25 tháng 3 2020

Bài 1:

a) (3x - 2)(4x + 5) = 0

<=> 3x - 2 = 0 hoặc 4x + 5 = 0

<=> 3x = 2 hoặc 4x = -5

<=> x = 2/3 hoặc x = -5/4

b) (2,3x - 6,9)(0,1x + 2) = 0

<=> 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0

<=> 2,3x = 6,9 hoặc 0,1x = -2

<=> x = 3 hoặc x = -20

c) (4x + 2)(x^2 + 1) = 0

<=> 4x + 2 = 0 hoặc x^2 + 1 # 0

<=> 4x = -2

<=> x = -2/4 = -1/2

d) (2x + 7)(x - 5)(5x + 1) = 0

<=> 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0

<=> 2x = -7 hoặc x = 5 hoặc 5x = -1

<=> x = -7/2 hoặc x = 5 hoặc x = -1/5

13 tháng 12 2020

bài 2:

a, (3x+2)(x^2-1)=(9x^2-4)(x+1)

(3x+2)(x-1)(x+1)=(3x-2)(3x+2)(x+1)

(3x+2)(x-1)(x+1)-(3x-2)(3x+2)(x+1)=0

(3x+2)(x+1)(1-2x)=0

b, x(x+3)(x-3)-(x-2)(x^2-2x+4)=0

x(x^2-9)-(x^3+8)=0

x^3-9x-x^3-8=0

-9x-8=0

tự tìm x nha

1 tháng 11 2021

a) \(\Rightarrow x\left(x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)

b) \(\Rightarrow x\left(x^2-4\right)=0\Rightarrow x\left(x-2\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

c) \(\Rightarrow\left(x-1\right)\left(5x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)

d) \(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=0\Rightarrow\left(x+5\right)\left(2-x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

e) \(\Rightarrow2x^2-10x-3x-2x^2=26\)

\(\Rightarrow-13x=26\Rightarrow x=-2\)

f) \(\Rightarrow\left(x-2012\right)\left(5x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2012\\x=\dfrac{1}{5}\end{matrix}\right.\)

12 giờ trước (14:41)

vậy giỏi zữ vậy

NV
8 tháng 3 2020

Bài 1

a/ \(x\left(x^2+1\right)+2\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2+1\right)=0\Rightarrow x=-2\)

b/

\(\Leftrightarrow x^3-6x^2+9x+5x^2-30x+45=0\)

\(\Leftrightarrow x\left(x-3\right)^2+5\left(x-3\right)^2=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-3\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=3\end{matrix}\right.\)

NV
8 tháng 3 2020

1.

c/ \(\Leftrightarrow x^3+2x^2+2x+x^2+2x+2=0\)

\(\Leftrightarrow x\left(x^2+2x+2\right)+x^2+2x+2=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+2x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^2+2x+2=0\left(vn\right)\end{matrix}\right.\)

d/

\(\Leftrightarrow x^4+x^3-2x^2-x^3-x^2+2x+4x^2+4x-8=0\)

\(\Leftrightarrow x^2\left(x^2+x-2\right)-x\left(x^2+x-2\right)+4\left(x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x^2-x+4\right)\left(x^2+x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+4=0\left(vn\right)\\x^2+x-2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

1) Ta có: \(x^2-4x+4=0\)

\(\Leftrightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x-2=0\)

hay x=2

Vậy: S={2}

Bài 2 : Tìm x biết:a) 2x(x – 5) – x(3 + 2x) = 26               b) 5x(x – 1) = x – 1                  c) 2(x + 5) - x2 – 5x = 0                       d) (2x – 3)2 - (x + 5)2=0e) 3x3 – 48x = 0                                   f) x3 + x2 – 4x = 4g) (x – 1)(2x + 3) – x(x – 1) = 0          h) x2 – 4x + 8 = 2x – 1Bài 3: Sắp xếp rồi làm tính chia:a)   b)  Bài 4: Tìm a sao cho a)     Đa thức  x4 – x3 + 6x2 – x + a chia hết cho đa thức x2 – x + 5b)    Đa thức 2x3 – 3x2 + x + a chia...
Đọc tiếp

Bài 2 : Tìm x biết:

a) 2x(x – 5) – x(3 + 2x) = 26               b) 5x(x – 1) = x – 1                  

c) 2(x + 5) - x2 – 5x = 0                       d) (2x – 3)2 - (x + 5)2=0

e) 3x3 – 48x = 0                                   f) x3 + x2 – 4x = 4

g) (x – 1)(2x + 3) – x(x – 1) = 0          h) x2 – 4x + 8 = 2x – 1

Bài 3: Sắp xếp rồi làm tính chia:

a)  

b) 

Bài 4: Tìm a sao cho

a)     Đa thức  x4 – x3 + 6x2 – x + a chia hết cho đa thức x2 – x + 5

b)    Đa thức 2x3 – 3x2 + x + a chia hết cho đa thức x + 2.

Bài 5*: Chứng minh rằng biểu thức:

A = x(x - 6) + 10 luôn luôn dương với mọi x.

B = x2 - 2x + 9y2 - 6y + 3 luôn luôn dương với mọi x, y.

Bài 6* : Tìm GTLN (GTNN) của biểu thức sau :

A = x2 – 4x + 2019                                       B = 4x2 + 4x + 11             

C = 4x – x2 +1                                              D = 2020 – x2 + 5x

E =  (x – 1)(x + 3)(x + 2)(x + 6)                   F= - x2 + 4xy – 5y2 + 6y – 17

G = x2 – 4xy + 5y2 + 10x – 22y + 28

Bài 7: Cho  biểu thức   M  =

a/   Tìm điều kiện  để biểu thức  M có nghĩa ?

b/   Rút gọn biểu thức M ?               

c/   Tìm x nguyên để  M có giá trị nguyên.

d/   Tìm giá trị của M tại x = -2      

e/   Với giá trị nào của x thì M bằng 5.

Bài 8 : Cho biểu thức : M =

a)     Tìm điều kiện xác định và rút gọn biểu thức

b)    Tính giá trị của M khi x = 1; x = -1

c)     Tìm số tự nhiên x để M có giá trị nguyên.

Bài 9: Cho biểu thức

a/Tìm giá trị của x để giá trị của biểu thức C được xác định.  

b/Tìm x để C = 0.  

c/ Tính giá trị của C biết |2x -1| = 3

 

d/ Tìm x để C là số nguyên âm lớn nhất.                  

1

Bài 2: 

a: \(\Leftrightarrow2x^2-10x-3x-2x^2=26\)

=>-13x=26

hay x=-2

b: \(\Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\)

hay \(x\in\left\{1;\dfrac{1}{5}\right\}\)

c: \(\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\)

hay \(x\in\left\{-5;2\right\}\)

26 tháng 8 2018

24 tháng 2 2018

a.

\(2\left(x+5\right)-x^2-5x=0\)

\(\Leftrightarrow2x+10-x^2-5x=0\)

\(\Leftrightarrow-x^2-3x+10=0\)

\(\Leftrightarrow x^2+3x-10=0\)

\(\Leftrightarrow x^2+5x-2x-10=0\)

\(\Leftrightarrow\left(x^2+5x\right)-\left(2x+10\right)=0\)

\(\Leftrightarrow x\left(x+5\right)-2\left(x+5\right)\)

\(\Leftrightarrow\left(x-2\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)

24 tháng 2 2018

b.

\(2x^2+3x-5=0\)

\(\Leftrightarrow2x^2-2x+5x-5=0\)

\(\Leftrightarrow\left(2x^2-2x\right)+\left(5x-5\right)=0\)

\(\Leftrightarrow2x\left(x-1\right)+5\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-5}{2}\end{matrix}\right.\)

\(a,\left(x-1\right)\left(5x+3\right)=\left(3x-8\right)\left(x-1\right)\)

\(\left(x-1\right)\left(5x+3-3x+8\right)=0\)

\(\left(x-1\right)\left(2x+11\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\2x+11=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\2x=-11\end{cases}\Rightarrow}\orbr{\begin{cases}x=1\\x=-\frac{11}{2}\end{cases}}}\)

\(b,3x\left(25x+15\right)-35\left(5x+3\right)=0\)

\(15x\left(5x+3\right)-35\left(5x+3\right)=0\)

\(\left(5x+3\right).5\left(3x-7\right)=0\)

\(\Rightarrow\orbr{\begin{cases}5x+3=0\\5\left(3x-7\right)=0\end{cases}\Rightarrow\orbr{\begin{cases}5x=-3\\3x-7=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{3}{5}\\3x=7\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{3}{5}\\x=\frac{7}{3}\end{cases}}}\)

Bài 1: 

a: \(=6x^3-10x^2+6x\)

b: \(=-2x^3-10x^2-6x\)

Bài 4: 

a: =>3x+10-2x=0

=>x=-10

c: =>3x2-3x2+6x=36

=>6x=36

hay x=6

4 tháng 1 2022

Bài 1:

\(a,=6x^3-10x^2+6x\\ b,=-2x^3-10x^2-6x\)

Bài 4:

\(a,\Leftrightarrow3x+10-2x=0\Leftrightarrow x=-10\\ b,\Leftrightarrow x\left(2x^2+9x-5\right)-\left(2x^3+9x^2+x+4,5\right)=3,5\\ \Leftrightarrow2x^3+9x^2-5x-2x^3-9x^2-x-4,5=3,5\\ \Leftrightarrow-6x=8\Leftrightarrow x=-\dfrac{4}{3}\\ c,\Leftrightarrow3x^2-3x^2+6x=36\Leftrightarrow x=6\)

Bài 1:

\(a,=7xy\left(2x-3y+4xy\right)\\ b,=x\left(x+y\right)-5\left(x+y\right)=\left(x-5\right)\left(x+y\right)\\ c,=\left(x-y\right)\left(10x+8\right)=2\left(5x+4\right)\left(x-y\right)\\ d,=\left(3x+1-x-1\right)\left(3x+1+x+1\right)\\ =2x\left(4x+2\right)=4x\left(2x+1\right)\\ e,=5\left[\left(x-y\right)^2-4z^2\right]=5\left(x-y-2z\right)\left(x-y+2z\right)\\ f,=x^2+8x-x-8=\left(x+8\right)\left(x-1\right)\\ g,\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\\ =\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\\ h,=x^2+3x+x+3=\left(x+3\right)\left(x+1\right)\)

20 tháng 10 2017

a) x(4x2-1)=0

=>x(2x-1)(2x+1)=0

=>\(\left[{}\begin{matrix}x=0\\2x-1=0\\2x+1=0\end{matrix}\right.\) =>\(\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)

vậy x\(\in\) {\(\dfrac{-1}{2}\) ;0;\(\dfrac{1}{2}\) }

c)x3-x2-x+1=0

=>(x3-x2)-(x-1)=0

=>x2(x-1)-(x-1)=0

=>(x-1)(x2-1)=0

=>\(\left[{}\begin{matrix}x-1=0\\x^2-1=0\end{matrix}\right.\) =>\(\left[{}\begin{matrix}x=1\\x=1\end{matrix}\right.\)

25 tháng 10 2017

Bổ sung thêm \(x^2=1\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\).