\(3x^2+y^2+z^2+2x-2y+2xy-3=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 7 2018

Lời giải:

\(3x^2+y^2+z^2+2x-2y+2xy+3=0\)

\(\Leftrightarrow (x^2+y^2+1+2xy-2y-2x)+2(x^2+2x+1)+z^2=0\)

\(\Leftrightarrow (x+y-1)^2+2(x+1)^2+z^2=0\)

\(\left\{\begin{matrix} (x+y-1)^2\geq 0\\ (x+1)^2\geq 0\\ z^2\geq 0\end{matrix}\right., \forall x,y,z\in\mathbb{R}\)

Do đó: \((x+y-1)^2+2(x+1)^2+z^2\geq 0\)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} (x+y-1)^2=0\\ (x+1)^2=0\\ z^2=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=-1\\ y=2\\ z=0\end{matrix}\right.\)

9 tháng 7 2018

Bài 1 :

\(e,x^2+2xy+y^2-2x-2y+1\)

\(=\left(x+y-1\right)^2\)

Bài 2:

\(b,2x^3+3x^2+2x+3=0\)

\(\Leftrightarrow\left(2x^3+2x\right)+\left(3x^2+3\right)=0\)

\(\Leftrightarrow2x\left(x^2+1\right)+3\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(2x+3\right)=0\)

\(\Leftrightarrow2x+3=0\left(x^2+1>0\right)\)

\(\Leftrightarrow x=-\dfrac{3}{2}\)

13 tháng 9 2017

Mấy chế em xin câu 3 ạ :>>

3. Giải pt :

\(x^2-10x+16=0\)

\(\Leftrightarrow x^2-8x-2x+16=0\)

\(\Leftrightarrow\left(x-8\right)\cdot\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)

Vậy gt của x để bt đạt giá trị bằng 0 là \(x\in\left\{2;8\right\}\)

13 tháng 9 2017

4. \(2x^2+2xy+y^2+2x+1=0\)

\(\Leftrightarrow y^2+2xy+2x^2+2x+1=0\)

\(\Leftrightarrow y^2+2xy+x^2+x^2+2x+1=0\)

\(\Leftrightarrow\left(y+x\right)^2+\left(x+1\right)^2=0\)

\(\Rightarrow x+1=0\Rightarrow x=-1\)

\(\Rightarrow y+x=0\Leftrightarrow y-1=0\Rightarrow y=1\)

Vậy giá trị của \(x\) là -1. (Nếu kết luận cả y thì giá trị của \(y\) là 1)

31 tháng 7 2018

\(2x^2+2y^2+z^2+2xy+2yz+2xz+10x+6y+34=0\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2xz\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)

\(\Rightarrow x=-5,y=-3,z=8\)