Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(5x-2)(3x+1)+(7-15x)(x+3)=-20
<=> 15x2+5x-6x-2+7x+21-15x2-45x+20=0
<=>39-39x=0
<=>39(1-x)=0
<=>1-x=0
=>x=1
(5x-2)(3x+1)+(7-15x)(x+3)=-20
=>\(15x^2-6x+5x-2+7x-15^2+21-45x=-20\)
=>\(-39x+19=-20\)
=>\(-39x=-39\)
=>\(x=1\)
vậy x=1
\(b,4x^2-x-5=0\)
\(\Leftrightarrow4x^2-5x+4x-5=0\)
\(\Leftrightarrow x\left(4x-5\right)+4x-5=0\)
\(\Leftrightarrow\left(4x-5\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{5}{4}\end{cases}}\)
Bài 2
\(a,x^3+5x^2+3x-9\)
\(\Leftrightarrow x^3-x^2+6x^2-6x+9x-9\)
\(\Leftrightarrow x^2\left(x-1\right)+6x\left(x-1\right)+9\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+6x+9\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)^2\)
b,\(x^3-7x-6\)
\(\Leftrightarrow x^3-3x^2+3x^2-9x+2x-6\)
\(\Leftrightarrow x^2\left(x-3\right)+3x\left(x-3\right)+2\left(x-3\right)\)
\(\Leftrightarrow\left(x-3\right)\left(x^2+3x+2\right)\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)\left(x+2\right)\)
c,\(3x^3-7x^2+17x-5\)
\(\Leftrightarrow3x^3-x^2-6x^2+2x+15x-5\)
\(\Leftrightarrow x^2\left(3x-1\right)-2x\left(3x-1\right)+5\left(3x-1\right)\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2-2x+5\right)\)
Bài 1:
a)\(28x^3+15x^2+75x+125=0\)
\(\Leftrightarrow\left(4x+5\right)\left(7x^2-5x+25\right)=0\)
Dễ thấy: \(7x^2-5x+25=7\left(x-\frac{5}{14}\right)^2+\frac{675}{28}>0\)
\(\Rightarrow4x+5=0\Rightarrow x=-\frac{5}{4}\)
b)\(4x^2-x-5=0\)
\(\Leftrightarrow\left(x+1\right)\left(4x-5\right)=0\)
\(\Rightarrow x=-1;x=\frac{5}{4}\)
Bài 2:
a)\(x^3+5x^2+3x-9\)
\(=\left(x-1\right)\left(x+3\right)^2\)
b)\(x^3-7x-6\)
\(=\left(x-3\right)\left(x+1\right)\left(x+2\right)\)
c)\(3x^3-7x^2+17x-5\)
\(=\left(3x-1\right)\left(x^2-2x+5\right)\)
a. \(\left(3x-5\right)^2-\left(x+1\right)^2=0\Leftrightarrow\left(3x-5+x+1\right)\left(3x-5-x-1\right)=0\Leftrightarrow\left(4x-4\right)\left(2x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}4x-4=0\\2x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy ...
b. \(\left(5x-4\right)^2-49x^2=0\Leftrightarrow\left(5x-4\right)^2-\left(7x\right)^2=0\Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}-2x-4=0\\12x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy ...
c. \(4x^3-36x=0\Leftrightarrow4x\left(x^2-9\right)=0\Leftrightarrow4x\left(x-3\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}4x=0\\x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
Vậy ...
d. \(\left(2x+3\right)\left(x-1\right)+\left(2x-3\right)\left(1-x\right)=0\Leftrightarrow\left(2x+3\right)\left(x-1\right)-\left(2x-3\right)\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(2x+3-2x+3\right)=0\Leftrightarrow6\left(x-1\right)=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy ...
2.(x+5) - x2 - 5x = 0
2(x+5) - x(x+5) = 0
(x+5)(2-x) = 0
=> x+5=0 hoặc 2-x=0
=> x=-5 hoặc x=2
\(16-5x^2-3=0\)
\(\Leftrightarrow16-5x^2=0+3\)
\(\Leftrightarrow16-5x^2=3\)
\(\Leftrightarrow5x^2=16-3\)
\(\Leftrightarrow5x^2=13\)
\(\Leftrightarrow x^2=\frac{13}{5}\)
\(\Leftrightarrow x^2=2,6\)
\(\Leftrightarrow1,61\approx1,6\)
\(\Rightarrow x=1,6\)
\(16-5x^2-3=0\)
\(\Leftrightarrow16-5x^2=3\)
\(\Leftrightarrow5x^2=16-3\)
\(\Leftrightarrow5x^2=13\Leftrightarrow x^2=\frac{13}{5}\)
\(\Rightarrow\orbr{\begin{cases}x=\sqrt{\frac{13}{5}}\\x=-\sqrt{\frac{13}{5}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{65}}{5}\\x=-\frac{\sqrt{65}}{5}\end{cases}}\)
3x^2-5x+2=0
<=>3x2-3x-2x+2=0
<=>3x.(x-1)-2.(x-1)=0
<=>(x-1)(3x-2)=0
<=>x-1=0 hoặc 3x-2=0
<=>x=1 hoặc 3x=2
<=>x=1 hoặc x=2/3