![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1
\(\left(x-2\right):2.3=6\)
\(\Leftrightarrow\left(x-2\right):2=2\)
\(\Leftrightarrow\left(x-2\right)=4\)
\(\Leftrightarrow x=4+2=6\)
c) ta có
\(\left[\left(2x+1\right)+1\right]m:2=625\)
\(\Leftrightarrow\left[\left(2x+1\right)+1\right]\left\{\left[\left(2x+1\right)-1\right]:2+1\right\}=1250\)
\(\Leftrightarrow\left(2x+1\right)^2+1-1:2+1=1250\)
\(\Leftrightarrow\left(2x+1\right)^2+1-2+1=1250\)
\(\Leftrightarrow\left(2x+1\right)^2+1-2=1249\)
\(\Leftrightarrow\left(2x+1\right)^2+1=1251\)
\(\Leftrightarrow\left(2x+1\right)^2=1250\)
...
2
\(\left(x-\frac{1}{2}\right).\frac{5}{3}=\frac{7}{4}-\frac{1}{2}\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right).\frac{5}{3}=\frac{5}{4}\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)=\frac{5}{4}:\frac{5}{3}\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)=\frac{5}{4}.\frac{3}{5}\)
\(\Leftrightarrow x-\frac{1}{2}=\frac{3}{4}\)
\(\Leftrightarrow x=\frac{3}{4}+\frac{1}{2}=\frac{5}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(3.\)
\(\frac{x-1}{2011}+\frac{x-2}{2010}+\frac{x-3}{2009}=\frac{x-4}{2008}\)
\(\Rightarrow\)\(\frac{x-1}{2011}-1+\frac{x-2}{2010}-1+\frac{x-3}{2009}-1-\frac{x-4}{2008}+1+2=0\)
\(\Rightarrow\)\(\frac{x-1}{2011}-\frac{2011}{2011}+\frac{x-2}{2010}-\frac{2010}{2010}+\frac{x-3}{2009}-\frac{2009}{2009}-\frac{x-4}{2008}+\frac{2008}{2008}=0\)
\(\Rightarrow\)\(\frac{x-2012}{2011}+\frac{x-2012}{2010}+\frac{x-2012}{2009}-\frac{x-2012}{2008}=0\)
\(\Rightarrow\)\(x-2012\left(\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2009}+\frac{1}{2008}\right)=0\)
\(\Rightarrow\)\(x=2012\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(1+2+3+...+x=500500\)
\(\Rightarrow\frac{x.\left(x+1\right)}{2}=500500\)
\(\Rightarrow x.\left(x+1\right)=1001000\)
\(\Rightarrow1000.1001\)
..
![](https://rs.olm.vn/images/avt/0.png?1311)
a. x:(1/2+2/3)=6/5
=>x:7/6=6/5
=>x=6/5*7/6=>x=7/5
b.(x-1/2)-5(x-2/3)=3/2x
=>x-1/2-5x+10/3=3/2x
=>-4x+17/6=3/2x
=>17/6x=3/2x--4x
=>17/6=x(3/2+4)=>17/6=11/2x=>x=17/33
c.-5(x+1/5)-1/2(x-2/3)=x
=>-5x-1-1/2x+1/3=x=>-11/2x-2/3=x
=>-2/3=x+11/2x=>-2/3=x(1+11/2)=>-2/3=13/2x
=>x=-4/39
a) x : (1/2 + 2/3) = 6/5
=> x : 7/6 = 6/5
=> x = 6/5 x 7/6
x = 7/5
b) , c) ko bít hihi
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 : Bài giải
\(-2\left(-3-4x\right)-3\left(3x-7\right)=31\)
\(6+8x-9x-21=31\)
\(-x-15=31\)
\(-x=31+15\)
\(-x=46\)
\(x=-46\)
b, \(10\left(x-7\right)=8\left(x-4\right)+x\)
\(10x-70=8x-32+x\)
\(10x-70=9x-32\)
\(10x-9x=-32+70\)
\(x=38\)
c, \(2\left|x-1\right|=3\cdot\left(5-1\right)\)
\(2\left|x-1\right|=15-3\)
\(2\left|x-1\right|=12\)
\(\left|x-1\right|=12\text{ : }2\)
\(\left|x-1\right|=6\)
\(\Rightarrow\orbr{\begin{cases}x-1=-6\\x-1=6\end{cases}}\Rightarrow\orbr{\begin{cases}x=-5\\x=7\end{cases}}\)
\(\Rightarrow\text{ }x\in\left\{-5\text{ ; }7\right\}\)
d, \(2\left(x+3\right)-2\left(x-3\right)=x\)
\(2\left(x+3-x-3\right)=x\)
\(2\cdot0=x\)
\(x=0\)
e, \(\left(x+3\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+3=0\\x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=4\end{cases}}\)
\(\Rightarrow\text{ }x\in\left\{-3\text{ ; }4\right\}\)
a, \(-2\left(-3-4x\right)-3\left(3x-7\right)=31\)
\(6+8x-9x-21=31\)
\(-x-15=31\)
\(-x=31+15\)
\(-x=46\)
\(x=-46\)
b, \(10\left(x-7\right)=8\left(x-4\right)+x\)
\(10x-70=8x-32+x\)
\(10x-70=9x-32\)
\(10x-9x=-32+70\)
\(x=38\)
c, \(2\left|x-1\right|=3\cdot\left(5-1\right)\)
\(2\left|x-1\right|=15-3\)
\(2\left|x-1\right|=12\)
\(\left|x-1\right|=12\text{ : }2\)
\(\left|x-1\right|=6\)
\(\Rightarrow\orbr{\begin{cases}x-1=-6\\x-1=6\end{cases}}\Rightarrow\orbr{\begin{cases}x=-5\\x=7\end{cases}}\)
\(\Rightarrow\text{ }x\in\left\{-5\text{ ; }7\right\}\)
d, \(2\left(x+3\right)-2\left(x-3\right)=x\)
\(2\left(x+3-x-3\right)=x\)
\(2\cdot0=x\)
\(x=0\)
e, \(\left(x+3\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+3=0\\x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=4\end{cases}}\)
\(\Rightarrow\text{ }x\in\left\{-3\text{ ; }4\right\}\)