Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
p(x)=\(x^3+ã^2+bx+c\)
với x=1 thì p(1)=0 hay
\(1+a+b+c=0\)
p(x) \(chia\)p(x-2) dư 6
với x=2 =>\(4a+2b+c+8=6< =>4a+2b+c=-2\)
tương tự với cái còn lại
xong bạn giải hệ phương trình bậc nhất ba ẩn là xong
\(x\)chia hết cho \(5\)
\(\Rightarrow\)\(x=5k\) \(\left(k\in N\right)\)
\(x\)chia \(7\)dư \(2\)
\(\Rightarrow\)\(x=7k+2\) \(\left(k\in N\right)\)
\(x\)chia \(9\)dư \(4\)
\(\Rightarrow\)\(x=9k+4\) \(\left(k\in N\right)\)
x chia hết cho 5 => x có tận cùng là 0 hoặc 5
x chia 7 dư 2 => x - 2 chia hết cho 7 => x - 2 có tận cùng là 2 hoặc 7 và thuộc Ư(7) = { 7; 42; 77; 112; ...}
Vậy x thuộc {5; 40; 75; 110; ...}
x chia cho 9 dư 4 => x - 4 chia hết cho 9
x - 4 thuộc {9; 44; 79; 114; ...}
mà x - 4 chia hết cho 9 nên x thuộc x {9}
Vậy để x thỏa mãn điều kiện thì x = 9
+ P(x) chia hết cho x + 1
⇔ P(-1) = 0
⇔ m . ( - 1 ) 3 + ( m – 2 ) ( - 1 ) 2 – ( 3 n – 5 ) . ( - 1 ) – 4 n = 0
⇔ -m + m – 2 + 3n – 5 – 4n = 0
⇔ -n – 7 = 0
⇔ n = -7 (1)
+ P(x) chia hết cho x – 3
⇔ P(3) = 0
⇔ m.33 + (m – 2).32 – (3n – 5).3 – 4n = 0
⇔ 27m + 9m – 18 – 9n + 15 – 4n = 0
⇔ 36m – 13n = 3 (2)
Từ (1) và (2) ta có hệ phương trình :
+ P(x) chia hết cho x + 1
⇔ P(-1) = 0
⇔ m.(-1)3 + (m – 2)(-1)2 – (3n – 5).(-1) – 4n = 0
⇔ -m + m – 2 + 3n – 5 – 4n = 0
⇔ -n – 7 = 0
⇔ n = -7 (1)
+ P(x) chia hết cho x – 3
⇔ P(3) = 0
⇔ m.33 + (m – 2).32 – (3n – 5).3 – 4n = 0
⇔ 27m + 9m – 18 – 9n + 15 – 4n = 0
⇔ 36m – 13n = 3 (2)
Từ (1) và (2) ta có hệ phương trình :