\(^{-1^{2018}}\) | = 3x + 2019^0

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2019

=>||3x-3|+2x-1|=3x+1

=>3x-3+2x-1=3x+1 hoặc 3x-3+2x-1=-3x+1

1,<=>5x-4=3x+1<=>5x-3x=4+1<=>2x=5<=>x=5/2

2,<=>5x-4=-3x+1<=>5x+3x=4+1<=>8x=5<=>x=5/8

1 tháng 1 2019

a) \(A=\left|x-1\right|+2018\)

Vì \(\left|x-1\right|\ge0\forall x\)

\(\Rightarrow A\ge2018\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

1 tháng 1 2019

\(Tacó:\)

\(|x-1|\ge0\Rightarrow|x-1|+2018\left(\cdot\right)\ge2018\)

\(\Rightarrow GTNNcua\left(\cdot\right)=2018\)

Dấu "=" xảy ra khi: x=1

Vậy (*) Đạt GTNN là: 2018 khi: x=1

a)\(2019-\left|x-2019\right|=x\)

\(\Rightarrow2019-x=\left|x-2019\right|\)

=>\(\left|x-2019\right|=-\left(x-2019\right)\)

=>\(x-2019\le0\)

=>\(x\le2019\)

b) Vì \(\left(2x-1\right)^{2018}\ge0\forall x\)

        \(\left(y-\frac{2}{5}\right)^{2018}\ge0\forall y\)

\(\left|x+y-z\right|\ge0\forall x,y,z\)

=> \(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}\)\(+\left|x+y-z\right|\ge0\forall x,y,z\)

mà \(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}\)\(+\left|x+y-z\right|=0\)

\(\Leftrightarrow\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{cases}}\)=>\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}}\)

6 tháng 11 2019

a, Ta có:

\(\left|x-2019\right|=\orbr{\begin{cases}x-2019\ge0\Rightarrow x\ge2019\\-x+2019< 0\Rightarrow x< 2019\end{cases}}\)

Xét x<2019 thì |x-2019|=-x+2019

Khi đó: 2019-(-x+2019)=x

\(\Leftrightarrow\)-x+2019=2019-x

\(\Leftrightarrow\)-x+2019+x=2019

\(\Leftrightarrow\)0x+2019=2019

\(\Leftrightarrow\)0x=0     (thỏa mãn)

Xét 2019\(\le\)x thì |x-2019|=x-2019

Khi đó 2019-(x-2019)=x

\(\Leftrightarrow\)2019-x+2019=x

\(\Leftrightarrow\)4038-x=x

\(\Leftrightarrow\)4038=2x

\(\Leftrightarrow\)x=2019(thỏa mãn)

Vậy .......................................................!!!

24 tháng 8 2017

\(a,\left(-3\text{x}+3\right)\left(-2\text{x}-2\right)\le\)\(0\)

\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}-3\text{x}+3\le0\Rightarrow x\ge1\\-2\text{x}-2\ge0\Rightarrow x\le-2\end{cases}}\\\hept{\begin{cases}-3x+3\ge0\Rightarrow x\le1\\-2\text{x}-2\le0\Rightarrow x\ge-2\end{cases}}\end{cases}\Rightarrow\orbr{\begin{cases}-2\ge x\ge1\left(lo\text{ại}\right)\\1\ge x\ge-2\left(ch\text{ọn}\right)\end{cases}}}\)

24 tháng 8 2017

a) Do: (-3x + 3)(-2x - 2) bé hơn hoặc bằng 0 nên (-3x + 3) và (-2x - 2) trái dấu.

Mà: -3x + 3 > -2x - 2

=> -3x + 3 lớn hơn hoặc bằng 0 và -2x - 2 bé hơn hoặc bằng 0

=> x bé hơn hoặc bằng 1 và x lớn hơn hoặc bằng -2

b) Do: (1/2 - 2x)(1/2 + 3x) lớn hơn hoặc bằng 0 nên (1/2 - 2x) và (1/2 + 3x) cùng dấu.

TH1: Khi (1/2 - 2x) và (1/2 + 3x) lớn hơn hoặc bằng 0

=> x lớn hơn hoặc bằng 1/4 và x lớn hơn hoặc bằng -1/6

=> x lớn hơn hoặc bằng -1/6

Th2: (1/2 - 2x) và (1/2 + 3x) cùng bé hơn hoặc bằng 0

=> x bé hơn hoặc bằng 1/4 và x bé hơn hoặc bằng -1/6

=> x bé hơn hoặc bằng 1/4

26 tháng 12 2018

Bài 1 :

Vì \(\sqrt{3x+2y+z}\ge0\forall x;y;z\)

\(\left|y-\frac{1}{2}\right|\ge0\forall y\)

\(\left(z-2\right)^2\ge0\forall z\)

\(\Rightarrow A\ge2018\forall x;y;z\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3x+2y+z=0\\y-\frac{1}{2}=0\\z-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x+2\cdot\frac{1}{2}+2=0\\y=\frac{1}{2}\\z=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=\frac{1}{2}\\z=2\end{cases}}}\)

Vậy........

26 tháng 12 2018

Bài 2 :

Lý luận tương tự câu 1) ta có :

\(\hept{\begin{cases}x-1=0\\y+1=0\\x+y+z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\\1-1+z=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=-1\\z=0\end{cases}}}\)

Thay x; y; z vào P ta có :

\(P=1^{2018}+\left(-1\right)^{2019}+0^{2020}\)

\(P=1-1+0\)

\(P=0\)

7 tháng 2 2020

Cho A= \(x-2x+2^2x-2^3x+2^4x-...+2^{2019}x=2^{2020}+1\)

                           \(x\left(1-2+2^2-2^3+...+2^{2019}\right)=2^{2020}+1\)

Đặt B= \(1-2+2^2-2^3+...+2^{2019}\)

2B= \(2-2^2+2^3-2^4+...+2^{2020}\)

2B+B= \(2^{2020}+1\)\(\Leftrightarrow B=\frac{2^{2020}+1}{3}\)

Thay B vào A, ta có: 

A= \(\frac{\left(2^{2020}+1\right)x}{3}=2^{2020}+1\)

\(\Rightarrow\left(2^{2020}+1\right)x=\left(2^{2020}+1\right).3\)

\(\Rightarrow x=3\)

x - 2x + 22x - 23x + ... + 22018x - 22019x = 22020 + 1 (sửa lại đề vì để nguyên như thế dãy không đi theo quy luật với tất cả số)

=> x(1 - 2 + 22 - 23 + ... + 22018 - 22019) = 22020 + 1

Đặt A = 1 - 2 + 22 - 23 + ... + 22018 - 22019

=> 2A = 2 - 22 + 23 - 24 + ... + 22019 - 22020

Lấy 2A cộng A theo vế ta có : 

2A + A = (2 - 22 + 23 - 24 + ... + 22019 - 22020) + (1 - 2 + 22 - 23 + ... + 22018 - 22019)

=> 3A = 22020 + 1

=> A = 22020 + 1 : 3

Khi đó (1) <=> x(22020 + 1) : 3 = 22020 + 1

=> x = 3

Vậy x = 3