Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(-4x+5+2x-1=3\Leftrightarrow-2x=-1\Leftrightarrow x=\dfrac{1}{2}\)
b, \(-2x+2=2\Leftrightarrow x=0\)
c, \(-2x-6=-8\Leftrightarrow x=1\)
Ta có: \(\hept{\begin{cases}\left|x+1\right|\ge0\\\left|x+3\right|\ge0\\\left|x+5\right|\ge0\end{cases}}\Rightarrow VT\ge0\)
\(\Leftrightarrow3x-4\ge\Leftrightarrow x\ge\frac{4}{3}\)
\(\Rightarrow pt\Leftrightarrow3x+9=3x-4\Leftrightarrow9=-4\)(vô lí)
Vậy pt vô nghiệm
\(\left||2x-3|-x+3\right|=4x-1\)(1)
*Nếu \(x\le3\)thì \(\left(1\right)\Leftrightarrow\left|2x-3\right|+3-x=4x-1\)
\(\Leftrightarrow\left|2x-3\right|=5x-4\)(2)
+) TH1: \(x\ge\frac{3}{2}\)thì \(\left(2\right)\Leftrightarrow2x-3=5x-4\)
\(\Leftrightarrow-3x=-1\Leftrightarrow x=\frac{1}{3}\left(L\right)\)
+) TH2: \(x< \frac{3}{2}\)thì \(\left(2\right)\Leftrightarrow3-2x=5x-4\)
\(\Leftrightarrow-7x=-7\Leftrightarrow x=1\left(TM\right)\)
*Nếu \(x>3\)thì \(\left(1\right)\Leftrightarrow\left|2x-3\right|-3+x=4x-1\)
\(\Leftrightarrow\left|2x-3\right|=3x+2\)(3)
+) TH1: \(x\ge\frac{3}{2}\)thì \(\left(3\right)\Leftrightarrow2x-3=3x+2\Leftrightarrow-x=5\Leftrightarrow x=-5\left(L\right)\)
+) TH2: \(x< \frac{3}{2}\)thì \(\left(3\right)\Leftrightarrow3-2x=3x+2\Leftrightarrow-5x=-1\Leftrightarrow x=\frac{1}{5}\left(L\right)\)
Vậy x = 1
Noob ơi, bạn phải đưa vào máy tính ý solve cái là ra x luôn, chỉ tội là đợi hơi lâu
a, 4.(18 - 5x) - 12(3x - 7) = 15(2x - 16) - 6(x + 14)
=> 72 - 20x - 36x + 84 = 30x - 240 - 6x - 84
=> (72 + 84) + (-20x - 36x) = (30x - 6x) + (-240 - 84)
=> 156 - 56x = 24x - 324
=> 24x + 56x = 324 + 156
=> 80x = 480
=> x = 480 : 80 = 6
Vậy x = 6
a, |x^2 - 3x| = 0
=> x^2 - 3x = 0
=> x(x - 3) = 0
=> x = 0 hoặc x - 3 = 0
=> x = 0 hoặc x = 3
vậy_
\(\left|a^2-3a\right|=0\)
\(\Rightarrow a^2-3a=0\)
\(\Rightarrow a\left(a-3\right)=0\)
\(\Rightarrow\hept{\begin{cases}a=0\\a=3\end{cases}}\)
Lời giải:
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$|3x-1|+|x+4|\geq |3x-1+x+4|=|4x+3|$
Dấu "=" xảy ra khi $(3x-1)(x+4)\geq 0$
$\Leftrightarrow x\geq \frac{1}{3}$ hoặc $x\leq -4$
Áp dụng bất đẳng thức |a| + |b| >= |a+b| ta có
|3x-1| + |x+4| >= |3x-1+x+4|=|4x+3|
Dấu = xảy ra khi và chỉ khi
3x-1 và x+4 cùng dấu
\(\Leftrightarrow\left[{}\begin{matrix}3x-1,x+4\ge0\\3x-1,x+4\le0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{1}{3}\\x\le-4\end{matrix}\right.\)