K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2015

( 3 - x ) . (2x + 1 ) = 0

=> 3-x = 0       hoặc 2x+1=0

=> x=3-0          hoặc 2x = 0-1

=> x=3            hoặc  2x=-1

=>x=3                => x=-1/2

18 tháng 7 2015

\(\left(3-x\right).\left(2x+1\right)=0\)

\(\Leftrightarrow\) hoặc 3 - x = 0 hoặc 2x + 1 = 0

- Nếu 3 - x = 0 thì x = 3 - 0 = 3

- Nếu 2x + 1 = 0 thì 2x = 0 - 1 = - 1 \(\Rightarrow\) x = - 1 : 2 = \(-\frac{1}{2}\)

 Vậy x = 3 hoặc x = \(-\frac{1}{2}\)

2 tháng 6 2017
  1. ĐK \(x\ne0\Rightarrow\)\(\left(3x-1\right)\left(5-\frac{1}{2x}\right)=0\Leftrightarrow\orbr{\begin{cases}3x-1=0\\5-\frac{1}{2x}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=1\\10x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{3}\\x=\frac{1}{10}\end{cases}}}\)
  2. ĐK \(2x-1\ne0\Leftrightarrow x\ne\frac{1}{2}\)\(\frac{1}{4}+\frac{1}{3}:\left(2x-2\right)=5\Leftrightarrow\frac{1}{4}+\frac{1}{3\left(2x-1\right)}=5\)\(\Leftrightarrow3\left(2x-1\right)+4=4.3.5.\left(2x-1\right)\Leftrightarrow6x-3+4=120x-60\)\(\Leftrightarrow114x=61\Leftrightarrow x=\frac{61}{114}\)
  3. \(\left(2x+\frac{3}{5}\right)^2-\left(\frac{3}{5}\right)^2=0\Leftrightarrow\left(2x+\frac{3}{5}-\frac{3}{5}\right)\left(2x+\frac{3}{5}+\frac{3}{5}\right)=0\)\(2x\left(2x+\frac{6}{5}\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\2x=-\frac{6}{5}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}\)
  4. \(3\left(3x-\frac{1}{2}\right)^3+\frac{1}{9}=0\Leftrightarrow3\left(3x-\frac{1}{2}\right)^3=-\frac{1}{9}\)\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=-\frac{1}{27}\Leftrightarrow3x-\frac{1}{2}=\sqrt[3]{-\frac{1}{27}}\)\(\Leftrightarrow3x-\frac{1}{2}=-\frac{1}{3}\Leftrightarrow3x=\frac{1}{6}\Leftrightarrow x=\frac{1}{18}\)
29 tháng 6 2017

Mk năm nay lên lớp 9 nên chỉ làm bài 1 đc thôi

Câu 1:

a)\(\left(2x+3\right)^2-\left(x+1\right)^2=0\)

    \(\left(2x+3+x+1\right)\left(2x+3-x-1\right)=0\)

       \(\left(3x+4\right)\left(x+2\right)=0\)

             \(\Rightarrow\orbr{\begin{cases}3x+4=0\\x+2=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{4}{3}\\x=-2\end{cases}}\)

b)\(x^2-6x+5=0\)

   \(x^2-5x-x+5=0\)

   \(\left(x-5\right)\left(x+1\right)=0\)

           \(\Rightarrow\orbr{\begin{cases}x-5=0\\x+1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)

c)\(3x^2-5x+2=0\)

    \(3x^2-3x-2x+2=0\)

     \(\left(3x-2\right)\left(x-1\right)=0\)

               \(\Rightarrow\orbr{\begin{cases}3x-2=0\\x-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{2}{3}\\x=1\end{cases}}\)

15 tháng 8 2016

a) thay x = -3/2 vào pt được : \(\left(-\frac{3}{2}\right)^2-m.\left(-\frac{3}{2}\right)+m+1=0\Leftrightarrow m=-\frac{13}{10}\)

mà theo định lí Vi-et thì : x1+x2=m => x1=m-x2= -13/10+3/2=1/5 (giả sử x2 = -3/2)

b) tương tự

DT
16 tháng 6 2023

\(\left(a\right):2x-7\sqrt{x}+3=0\left(x\ge0\right)\\ < =>\left(2x-6\sqrt{x}\right)-\left(\sqrt{x}-3\right)=0\\ < =>2\sqrt{x}\left(\sqrt{x}-3\right)-\left(\sqrt{x}-3\right)=0\\ < =>\left(2\sqrt{x}-1\right)\left(\sqrt{x}-3\right)=0\\ =>\left[{}\begin{matrix}2\sqrt{x}-1=0\\\sqrt{x}-3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{1}{4}\left(TM\right)\\x=9\left(TM\right)\end{matrix}\right.\)

\(\left(b\right):3\sqrt{x}+5< 6\\ < =>3\sqrt{x}< 1\\ < =>\sqrt{x}< \dfrac{1}{3}\\ < =>0\le x< \dfrac{1}{9}\)

\(\left(c\right):x-3\sqrt{x}-10< 0\\ < =>\left(x-5\sqrt{x}\right)+\left(2\sqrt{x}-10\right)< 0\\ < =>\sqrt{x}\left(\sqrt{x}-5\right)+2\left(\sqrt{x}-5\right)< 0\\ < =>\left(\sqrt{x}-5\right)\left(\sqrt{x}+2\right)< 0\\ =>\left\{{}\begin{matrix}\sqrt{x}-5< 0\\\sqrt{x}+2>0\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}0\le x< 25\\x\ge0\end{matrix}\right.< =>0\le x< 25\)

\(\left(d\right):x-5\sqrt{x}+6=0\left(x\ge0\right)\\ < =>\left(x-2\sqrt{x}\right)-\left(3\sqrt{x}-6\right)=0\\ < =>\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)=0\\ < =>\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)=0\\ =>\left[{}\begin{matrix}\sqrt{x}-3=0\\\sqrt{x}-2=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=9\\x=4\end{matrix}\right.\left(TM\right)\)

\(\left(e\right):x+5\sqrt{x}-14< 0\\ < =>\left(x+7\sqrt{x}\right)-\left(2\sqrt{x}+14\right)< 0\\ < =>\sqrt{x}\left(\sqrt{x}+7\right)-2\left(\sqrt{x}+7\right)< 0\\ < =>\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)< 0\\ =>\left\{{}\begin{matrix}\sqrt{x}+7>0\\\sqrt{x}-2< 0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x\ge0\\0\le x< 4\end{matrix}\right.< =>0\le x< 4\)

17 tháng 6 2017

a) \(x^2-2\sqrt{3}x+3=0\Leftrightarrow\left(x+\sqrt{3}\right)^2=0\Leftrightarrow x=-\sqrt{3}\)

b) \(x^2-3=0\Leftrightarrow x^2=3\Leftrightarrow\orbr{\begin{cases}x=-\sqrt{3}\\x=\sqrt{3}\end{cases}}\)

c) \(2x^2-5=0\Leftrightarrow x^2=\frac{5}{2}\Leftrightarrow\orbr{\begin{cases}x=-\sqrt{\frac{5}{2}}\\x=\sqrt{\frac{5}{2}}\end{cases}}\)

17 tháng 6 2017

a) x2 - 2 \(\sqrt{3}\)x + 3 = 0 

<=> ( x - \(\sqrt{3}\)= 0

<=> x - \(\sqrt{3}\)= 0

<=> x = \(\sqrt{3}\)

b)  x2 - 3 = 0

<=> x= 3 

<=> x= \(\sqrt{3}\)hoặc x= -\(\sqrt{3}\)

c) 2x\(^2\)- 5 = 0 

<=> 2x2 = 5

<=> x2\(\frac{5}{2}\)

<=> \(\orbr{\begin{cases}x=\sqrt{\frac{5}{2}}\\x=-\sqrt{\frac{5}{2}}\end{cases}}\)

22 tháng 9 2019

1.Ta co:

\(\text{ }\sqrt{5x^2+10x+9}=\sqrt{5\left(x+1\right)^2+4}\ge2\)

\(\sqrt{2x^2+4x+3}=\sqrt{2\left(x+1\right)^2+1}\ge1\)

\(\Rightarrow A=\sqrt{5x^2+10x+9}+\sqrt{2x^2+4x+3}\ge2+1=3\)

Dau '=' xay ra khi \(x=-1\)

Vay \(A_{min}=3\)khi \(x=-1\)

22 tháng 9 2019

2c.

\(DK:x\ge\frac{1}{2}\)

\(\Leftrightarrow\text{ }2x+1+\sqrt{2x-1}=0\)

\(\Leftrightarrow2x-1+\sqrt{2x-1}+2=0\)

\(\Leftrightarrow\left(\sqrt{2x-1}+\frac{1}{2}\right)^2+\frac{7}{4}=0\)

Ma \(\left(\sqrt{2x-1}+\frac{1}{2}\right)^2+\frac{7}{4}>0\)

Vay PT vo nghiem