Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`#3107.101107`
`1/2x + 4/5 = 2x - 8/5`
`=> 1/2x - 2x = -4/5 - 8/5`
`=> -3/2x = -12/5`
`=> x = -12/5 \div (-3/2)`
`=> x = 8/5`
Vậy, `x = 8/5`
_____
`\sqrt{x} = 5`
`=> x = 5^2`
`=> x = 25`
Vậy, `x = 25`
___
`x^2 = 3`
`=> x^2 = (+-\sqrt{3})^2`
`=> x = +- \sqrt{3}`
Vậy, `x \in {-\sqrt{3}; \sqrt{3}}.`
a) x² - 2 = 0
x² = 2
x = -√2 (loại) hoặc x = √2 (loại)
Vậy không tìm được x Q thỏa mãn đề bài
b) x² + 7/4 = 23/4
x² = 23/4 - 7/4
x² = 4
x = 2 (nhận) hoặc x = -2 (nhận)
Vậy x = -2; x = 2
c) (x - 1)² = 0
x - 1 = 0
x = 1 (nhận)
Vậy x = 1
a, \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5x-1=0\\2x-\frac{1}{3}=0\end{cases}\Rightarrow}\orbr{\begin{cases}5x=1\\2x=\frac{1}{3}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{6}\end{cases}}\)
b. \(\left(x^2+1\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2+1=0\\x-4=0\end{cases}\Rightarrow}\orbr{\begin{cases}x^2=-1\left(Voly\right)\\x=4\end{cases}\Rightarrow x=4}\)
c, \(2x^2-\frac{1}{3}x=0\)
\(\Leftrightarrow x\left(2x-\frac{1}{3}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\2x-\frac{1}{3}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{6}\end{cases}}\)
d, \(\left(\frac{4}{5}\right)^{5x}=\left(\frac{4}{5}\right)^7\)
\(\Rightarrow5x=7\)
\(\Rightarrow x=\frac{7}{5}\)
e, Ta có: \(A=\frac{x+5}{x-2}=\frac{\left(x-2\right)+7}{x-2}=1+\frac{7}{x-2}\)
Để A ∈ Z <=> (x - 2) ∈ Ư(7) = { ±1; ±7 }
x - 2 | 1 | -1 | 7 | -7 |
x | 3 | 1 | 9 | -5 |
Vậy....
a) \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\2x-\frac{1}{3}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}5x=1\\2x=\frac{1}{3}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{6}\end{cases}}\)
Vậy : ....
b) \(\left(x^2+1\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x-4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=-1\left(loại\right)\\x=4\end{cases}}\)
c) \(2x^2-\frac{1}{3}x=0\)
\(\Leftrightarrow x\left(2x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-\frac{1}{3}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{6}\end{cases}}\)
Vậy :...
b) Ta có:
P(x) + H(x) = x4 - x3 + 2x2 + x + 1
=> H(x) = x4 - x3 + 2x2 + x + 1 - P(x)
=> H(x) = (x4 - x3 + 2x2 + x + 1) - (2x4 - x2 + x - 2)
=> H(x) = -x4 - x3 + 3x2 + 3
Vậy H(x) = -x4 - x3 + 3x2 + 3
|x - 4| + |6 - x| = 0
|x - 4| ; |6 - x| \(\ge\) 0
=> |x - 4| = |6 - x| = 0
|x - 4| = 0 => x= 4
|6 - x| = 0 => x= 6
Vì \(4\ne6\) n ê n không có giá trị của x
Bạn làm các câu khác tương tự
\(a)\)
\(f\left(x\right)=2x.\left(x^2-3\right)-4.\left(1-2x\right)+x^2.\left(x-2\right)+\left(5x+3\right)\)\(=2x^3-6x-4+8x+x^3-2x^2+5x+3=3x^3+7x-1-2x^2=3x^3-2x^2+7x-1\)\(g\left(x\right)=-3.\left(1-x^2\right)-2.\left(x^2-2x-1\right)=-3+3x^2-2x^2+4x+2=-1+x^2+4x=x^2+4x-1\)
\(b)\)
\(h\left(x\right)=f\left(x\right)-g\left(x\right)=\left(3x^3-2x^2+7x-1\right)-\left(-1+x^2+4x\right)=x^2+4x-1=3x^3-2x^2+7x-1+1-x^2-4x=3x^3-3x^2+3x\)
\(\text{Xét}:\)
\(3x^3-3x^2+3x=0\)
\(\rightarrow3x.\left(x^2-x+1\right)=0\)
\(\rightarrow x.\left(x^2-x+1\right)=0\)
\(\rightarrow\orbr{\begin{cases}3x.\left(x^2-x+1\right)=0\\x.\left(x^2-x+1\right)=0\end{cases}}\) \(\rightarrow\orbr{\begin{cases}x=0\\x^2-x+1=0\end{cases}}\)
\(\rightarrow\orbr{\begin{cases}x=0\\x\notinℝ\end{cases}}\) \(\rightarrow x=0\)
\(\text{Vậy nghiệm của}\)\(h\left(x\right)\)\(\text{là}:\)\(0\)
2x(x+1)-x2(x+2)+x-x+4=0
<=>2x2+2x-x3-2x2+4=0
<=>x3-2x2+2x2-4x+2x-4=0
<=>x2(x-2)+2x(x-2)+2(x-2)=0
<=>(x-2)(x2+2x+2)=0
<=>x-2=0 (do x2+2x+2=(x+1)2+1>0)
<=>x=2
Học Tốt ~~~