Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2(x - 3) + 5 = 3x - 1
2x-6+5=3x-1
2x-1=3x-1
2x-3x=-1+1
-x=0
x=0
2x(3x + 2) - 5 = 3( 2x^2 - 2x + 1)
6x2+4x-5=6x2-6x+3
6x2+4x-6x2+6x=3+5
10x=8
x=4/5
(3x - 2)(2x - 3) + 5 = 5
(3x-2)(2x-3)=0
=>3x-2=0 hoặc 2x-3=0
=>x=2/3 hoặc x=3/2
=> 4x^2 - 12x + 4 = 2x^2 - 2x - 2 - 2x^2 - 2x - 13
=> 4x^2 - 12x + 4 = - 4x - 15
=> 4x^2 - 12x + 4x + 4 + 15 = 0
=> 4x^2 - 8x + 19 = 0
Đề sai
\(\left(2x+1\right)\left(x^2-x\right)+x\left(5+x-2x^2\right)=3x+7\)
\(2x^3-2x^2+x^2-x+5x+x^2-2x^3=3x+7\)
\(5x-x=3x+7\)
\(4x-3x=7\)
\(x=7\)
(2x+1)(x^2-x)+x(-2x^2+x+5)=3x+7
=>2x^3-2x^2+x^2-x-2x^3+x^2+5x=3x+7
=>-x^2-x+x^2+5x=3x+7
=>4x=3x+7
=>x=7
a) 2x + 5 < 0 => 2x < - 5 => x < -2,5
b) -4 - 5x > 0 => -4 > 5x => -0,8 > x
c) -7x + 3 < 0 => -7x < -3 => x > 3/7
d) x - 7 > 0 => x > 7
e) -3 + 4x > 0 => 4x > 3 => x > 0,75
\(a,2x+5< 0\) \(b,-4-5x>0\)
\(\Rightarrow2x< -5\) \(\Rightarrow-4>5x\)
\(\Rightarrow x< -\frac{5}{2}\) \(\Rightarrow x< -\frac{4}{5}\)
\(c,-7x+3< 0\) \(d,x-7>0\)
\(\Rightarrow-7x< -3\) \(\Rightarrow x>7\)
\(\Rightarrow x>\frac{3}{7}\)
\(e,-3+4x>0\)
\(\Rightarrow4x>3\)
\(\Rightarrow x>\frac{3}{4}\)
23x+2=4x+5
22x+x.22=4x.45
22x.2x.22=22x.210
22x.2x.22-22x.22.28=0
22x.22(2x-28)=0
2x-28=0
2x=28
=>x=8
\(2^{3x+2}=4^{x+5}\Rightarrow2^{3x}.2^2=4^x.4^5\Rightarrow2^{3x}.2^2=\left(2^2\right)^{^x}.\left(2^2\right)^{^5}\Rightarrow2^{3x}.2^2=2^{2x}.2^{2.5}\Rightarrow2^{3x}:2^{2x}=2^{10}:2^2\Rightarrow2^{3x-2x}=2^{10-2}\Rightarrow2^x=2^8\Rightarrow x=8\)
\(\left|2x-3\right|-x=\left|2-x\right|\)
TH1 \(\left\{{}\begin{matrix}2x-3\ge0\\2-x\ge0\end{matrix}\right.\Leftrightarrow\dfrac{3}{2}\le x\le2\)
\(\Leftrightarrow2x-3-x=2-x\Leftrightarrow x=\dfrac{5}{2}\left(l\right)\)
TH2 \(\left\{{}\begin{matrix}2x-3\ge0\\2-x\le0\end{matrix}\right.\Leftrightarrow x\ge2\)
\(\Leftrightarrow2x-3-x=x-2\Leftrightarrow0=1\left(vl\right)\)
Th3 \(\left\{{}\begin{matrix}2x-3\le0\\2-x\ge0\end{matrix}\right.\Leftrightarrow x\le\dfrac{3}{2}\)
\(\Leftrightarrow3-2x-x=x-2\Leftrightarrow x=\dfrac{5}{4}\left(nhận\right)\)
TH4 \(\left\{{}\begin{matrix}2x-3\le0\\2-x\le0\end{matrix}\right.\left(vl\right)\)
vậy \(S=\left\{\dfrac{5}{4}\right\}\)