Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3-\sqrt{2x}\right)\left(2-3\sqrt{2x}\right)=6x-5\)ĐK : x>= 0
\(\Leftrightarrow6-9\sqrt{2x}-2\sqrt{2x}+6x=6x-5\)
\(\Leftrightarrow-11\sqrt{2x}+6x+6=6x-5\Leftrightarrow-11\sqrt{2x}=-11\)
\(\Leftrightarrow\sqrt{2x}=1\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\left(tm\right)\)
a) \(P=\frac{3x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+1}{3-x}\)
\(P=\frac{3\left(x-9\right)}{\left(x-3\right)\left(x-2\right)}-\frac{x+3}{x-2}-\frac{2x+1}{3-x}\)
\(P=\frac{3}{x-2}-\frac{x+3}{x-2}-\frac{2x+1}{3-x}\)
\(P=\frac{3\left(3-x\right)-\left(x+3\right)\left(3-x\right)-\left(2x+1\right)\left(x-2\right)}{\left(x-2\right)\left(3-x\right)}\)
\(P=\frac{9-3x-9+x^2-2x^2+4x-x+2}{\left(x-2\right)\left(3-x\right)}\)
\(P=\frac{2-x^2}{\left(x-2\right)\left(3-x\right)}\) (*)
b) Thay \(x=-\frac{1}{2}\) vào (*) ta có:
\(P=\frac{2-\left(-\frac{1}{2}\right)^2}{\left[\left(-\frac{1}{2}\right)-2\right]\left[3-\left(-\frac{1}{2}\right)\right]}=\frac{2-\frac{1}{4}}{-\frac{5}{2}.\frac{7}{2}}=-\frac{\frac{7}{4}}{\frac{5}{2}.\frac{7}{2}}=-\frac{7}{35}=-\frac{1}{5}\)
c) \(\frac{2-x^2}{\left(x-2\right)\left(3-x\right)}< 0\)
\(\Leftrightarrow2-x^2< 0\)
\(\Leftrightarrow-x^2< -2\)
\(\Leftrightarrow x^2>2\)
\(\Leftrightarrow\hept{\begin{cases}x< -\sqrt{2}\\-\sqrt{2}< x< \sqrt{2}\\x>2\end{cases}}\)
Vậy: ...
ta có : \(P=\sqrt{x^2-2x+5}=\sqrt{\left(x-1\right)^2+4}\ge\sqrt{4}=2\)
\(\Rightarrow P_{min}=2\) khi \(x=1\)
vậy GTNN của \(P\) là \(2\) khi \(x=1\)
Lop 7 nha ban, mik viet nham
\(2x-1=2x+3\)
\(\Leftrightarrow2x-2x=3+1\)
\(\Leftrightarrow0x=4\)
\(\Rightarrow x=\theta\)