Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{3}=\dfrac{7}{5}\)
=>\(x=7\cdot\dfrac{3}{5}=\dfrac{21}{5}\)
\(x-y=2^2\)
=>\(x-y=4\)
=>\(y=\dfrac{21}{5}-4=\dfrac{1}{5}\)
2^(x+1) ( 1 + 2^3 + 2^4) = 2^6 . 5^2
=> 2^x+1 ( 1 + 8 + 16 ) = 2^ 6. 5^2
=> 2^x + 1 . 25 = 2^6 .25
=> 2^x + 1 = 2^6
=> x + 1 = 6
=> x = 5
\(3^{x+1}-2.3^x=243\\ \Rightarrow3^x.3-2.3^x=243\\ \Rightarrow3^x=3^5\\ \Rightarrow x=5\)
a) Ta có :
\(27^{27}>27^{26}=\left(27^2\right)^{13}=729^{13}>243^{13}\)
\(\Rightarrow27^{27}>243^{13}\)
\(\Rightarrow-27^{27}< -243^{13}\)
\(\Rightarrow\left(-27\right)^{27}< \left(-243\right)^{13}\)
b) \(\left(\dfrac{1}{8}\right)^{25}>\left(\dfrac{1}{8}\right)^{26}=\left(\dfrac{1}{8^2}\right)^{13}=\left(\dfrac{1}{64}\right)^{13}>\left(\dfrac{1}{128}\right)^{13}\)
\(\Rightarrow\left(\dfrac{1}{8}\right)^{25}>\left(\dfrac{1}{128}\right)^{13}\)
\(\Rightarrow\left(-\dfrac{1}{8}\right)^{25}< \left(-\dfrac{1}{128}\right)^{13}\)
c) \(4^{50}=\left(4^5\right)^{10}=1024^{10}\)
\(8^{30}=\left(8^3\right)^{10}=512^{10}< 1024^{10}\)
\(\Rightarrow4^{50}>8^{30}\)
d) \(\left(\dfrac{1}{9}\right)^{17}< \left(\dfrac{1}{9}\right)^{12}< \left(\dfrac{1}{27}\right)^{12}\)
\(\Rightarrow\left(\dfrac{1}{9}\right)^{17}< \left(\dfrac{1}{27}\right)^{12}\)
\(\frac{2x-y}{2}=\frac{x+2y}{3}\)
\(\Leftrightarrow3\left(2x-y\right)=2\left(x+2y\right)\)
\(\Leftrightarrow6x-3y=2x+4y\)
\(\Leftrightarrow6x-2x=4y+3y\)
\(\Leftrightarrow4x=7y\)
\(\Leftrightarrow\frac{x}{7}=\frac{y}{4}\)
Vậy tỉ số giữa x và y là \(\frac{x}{7}=\frac{y}{4}\)
\(\frac{2x-y}{2}=\frac{x+2y}{3}\)
\(\Rightarrow3\left(2x-y\right)=2\left(x+2y\right)\)
\(\Rightarrow6x-3y=2x+4y\)
\(\Rightarrow6x-2x=3y+4y\)
\(\Rightarrow4x=7y\)
\(\Rightarrow\frac{x}{y}=\frac{4}{7}\)
Vậy tỉ số giữa x và y là \(\frac{4}{7}\)
_Chúc bạn học tốt_
a) \(\left(x+5\right)^3=64\)
\(\Leftrightarrow\left(x+5\right)^3=4^3\)
\(\Leftrightarrow x+5=4\)
\(\Leftrightarrow x=-1\)
Vậy x = - 1
b) \(x:\left(-\frac{3}{5}\right)^2=-\frac{3}{5}\)
\(\Leftrightarrow x=\left(-\frac{3}{5}\right)^2.\left(-\frac{3}{5}\right)\)
\(\Leftrightarrow x=\left(-\frac{3}{5}\right)^3\)
\(\Leftrightarrow x=-0,216\)
Vậy x = - 0, 216
c) \(\left(\frac{4}{7}\right)^4.x=\left(\frac{4}{7}\right)^6\)
\(\Leftrightarrow x=\left(\frac{4}{7}\right)^6:\left(\frac{4}{7}\right)^4\)
\(\Leftrightarrow x=\left(\frac{4}{7}\right)^2\)
\(\Leftrightarrow\text{x}=\frac{16}{49}\)
Vậy x = 16/49
d) \(\left(-\frac{1}{3}\right)^3x=\frac{1}{81}\)
\(\Leftrightarrow-\frac{1}{27}x=\frac{1}{81}\)
\(\Leftrightarrow x=\frac{1}{81}:\left(-\frac{1}{27}\right)\)
\(\Leftrightarrow x=-\frac{1}{3}\)
Vậy x = - 1/3
a)3^x+1=9^x
3^x+1=3.3^x
3^x+1=3^x+1
=>x thuộc TH Z
b)2^3.x+2=4^x+5
2^3x+2=2^2.(x+5)
2^3x+2=2^2x+10
2^3x=2^2x+8
3x-2x=8
=>x=8
c)3^2x-1=243
3^2x=243.3
3^2x=729
3^2x=3^6
=>2x=6
x=6:2=3
chúc bạn học tốt nha
a) \(\dfrac{81}{\left(-3\right)^n}=-243\)
\(\dfrac{\left(-3\right)^4}{\left(-3\right)^n}=\left(-3\right)^5\)
\(\left(-3\right)^n=\dfrac{\left(-3\right)^4}{\left(-3\right)^5}=\left(-3\right)^{-1}\)
n = -1
Vậy n = -1
b) \(\dfrac{25}{5^n}=5\)
\(\dfrac{5^2}{5^n}=5^1\)
\(5^n=\dfrac{5^2}{5^1}=5^1\)
n = 1
Vậy n = 1
c) \(\dfrac{1}{2}\cdot2^n+4\cdot2^n=9\cdot2^5\)
\(2^{n-1}+4\cdot2^{n-1}\cdot2=9\cdot2^5\)
\(2^{n-1}+8\cdot2^{n-1}=9\cdot2^5\)
\(\left(8+1\right)\cdot2^{n-1}=9\cdot2^5\)
\(9\cdot2^{n-1}=9\cdot2^5\)
\(2^{n-1}=2^5\cdot\dfrac{9}{9}=2^5\)
n - 1 = 5
n = 5 + 1 = 6
Vậy n = 6
a) 81/(-3)ⁿ = -243
(-3)ⁿ = 81 : (-243)
(-3)ⁿ = -1/3
n = -1
b) 25/5ⁿ = 5
5ⁿ = 25 : 5
5ⁿ = 5
n = 1
c) 1/2 . 2ⁿ + 4 . 2ⁿ = 9 . 2⁵
2ⁿ . (1/2 + 4) = 9 . 32
2ⁿ . 9/2 = 288
2ⁿ = 288 : 9/2
2ⁿ = 64
2ⁿ = 2⁶
n = 6
`#3107.101107`
\(\left(\dfrac{2}{3}\right)^x+\left(\dfrac{2}{3}\right)^{x+2}=\dfrac{104}{243}?\)
\(\Rightarrow\left(\dfrac{2}{3}\right)^x+\left(\dfrac{2}{3}\right)^x\cdot\left(\dfrac{2}{3}\right)^2=\dfrac{104}{243}\)
\(\Rightarrow\left(\dfrac{2}{3}\right)^x\cdot\left(1+\dfrac{2^2}{3^2}\right)=\dfrac{104}{243}\)
\(\Rightarrow\left(\dfrac{2}{3}\right)^x\cdot\left(1+\dfrac{4}{9}\right)=\dfrac{104}{243}\)
\(\Rightarrow\left(\dfrac{2}{3}\right)^x\cdot\dfrac{13}{9}=\dfrac{104}{243}\)
\(\Rightarrow\left(\dfrac{2}{3}\right)^x=\dfrac{104}{243}\div\dfrac{13}{9}\)
\(\Rightarrow\left(\dfrac{2}{3}\right)^x=\dfrac{8}{27}\)
\(\Rightarrow\left(\dfrac{2}{3}\right)^x=\dfrac{2^3}{3^3}\)
\(\Rightarrow\left(\dfrac{2}{3}\right)^x=\left(\dfrac{2}{3}\right)^3\)
\(\Rightarrow x=3\)
Vậy, `x = 3.`