Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\hept{\begin{cases}\left(3x-5\right)^{2010}\ge0\forall x\\\left(y-1\right)^{2012}\ge0\forall y\\\left(x-z\right)^{2014}\ge0\forall x,z\end{cases}}\)
\(\Rightarrow\left(3x-5\right)^{2010}+\left(y-1\right)^{2012}+\left(x-z\right)^{2014}\ge0\forall x,y,z\)
Do đó: \(\left(3x-5\right)^{2010}+\left(y-1\right)^{2012}+\left(x-z\right)^{2014}=0\)
\(\Leftrightarrow\hept{\begin{cases}3x-5=0\\y-1=0\\x-z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=1\\z=\frac{5}{3}\end{cases}}}\)
Vậy ...
Vì mỗi hạng tử bên VT đều > 0 nên VT > 0
Dấu "=" xảy ra khi từng hạng tử vế trái bằng 0
Tức là \(\hept{\begin{cases}3x-5=0\\y-1=0\\x-z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=z=\frac{5}{3}\\y=1\end{cases}}\)
Ix+\(\frac{1}{5}\)I=\(\frac{1}{36}\)
\(\hept{\begin{cases}x+\frac{1}{5}=\frac{1}{36}\\x+\frac{1}{5}=-\frac{1}{36}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{36}+\frac{1}{5}\\x=-\frac{1}{36}+\frac{1}{5}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{41}{180}\\x=\frac{31}{180}\end{cases}}\)
1. Tìm x, biết :
a. ( x - \(\frac{3}{4}\)) \(^2\)= 0
=> x - \(\frac{3}{4}\)= 0
=> x = 0 + \(\frac{3}{4}\)
=> x = \(\frac{3}{4}\)
b. ( x + \(\frac{1}{2}\)) \(^2\)= \(\frac{9}{64}\)
=> ( x + \(\frac{1}{2}\)) \(^2\)= ( \(\frac{3}{8}\)) \(^2\)
=> x + \(\frac{1}{2}\)= \(\frac{3}{8}\)
=> x = \(\frac{3}{8}\)- \(\frac{1}{2}\)
=> x = \(\frac{-1}{8}\)
c. \(\frac{\left(-2\right)^x}{16}=-8\)
=> \(\frac{\left(-2\right)^x}{16}=\frac{-8}{1}=\frac{-128}{16}\)
=> ( -2)\(^x\)= -128
=> ( -2 ) \(^x\)= ( -2) \(^7\)
=> x = 7
\(\frac{1}{4}+\frac{1}{3}:2x=-5\)
\(\frac{1}{3}:2x=-5-\frac{1}{4}\)
\(\frac{1}{3}:2x=\frac{-21}{4}\)
\(2x=\frac{1}{3}:\frac{-21}{4}\)
\(2x=\frac{-4}{63}\)
\(x=\frac{-4}{63}:2\)
\(x=\frac{-2}{63}\)
\(\)
\(\frac{1}{4}+\frac{1}{3}:2x=-5\)
\(\Rightarrow\frac{1}{3}:2x=-\frac{21}{4}\)
\(\Rightarrow2x=\frac{-4}{63}\)
\(\Rightarrow x=\frac{-2}{63}\)
\(\left(3x-\frac{1}{4}\right)\left(x+\frac{1}{2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-\frac{1}{4}=0\\x+\frac{1}{2}=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{12}\\x=\frac{-1}{2}\end{cases}}}\)
\(\left(2x-5\right)\left(\frac{3}{2}x+9\right)\left(0,3x-12\right)=0\)
Th1 : \(2x-5=0\Rightarrow x=\frac{5}{2}\)
Th2 : \(\frac{3}{2}x+9=0\Rightarrow x=-6\)
Th3 : \(0,3x-12=0\Rightarrow x=\frac{12}{0,3}\)
\(x^2\)- 3x = 0
x ( x - 3 ) = 0
=> x = 0 hoặc x - 3 = 0
x = 3
Vậy x = 0 hoặc x = 3
\(x^2-3x=0\)
\(x.x-3.x=0\)
x = 3 vì 3 x 3 - 3 x 3 = 0
x ko thể = -3 vì ( -3 ) x ( -3 ) - 3 x ( -3 ) = 18
tớ năm nay lớp 6 mà làm cũng được nhỉ
a) \(2\frac{1}{3}+\left(x-\frac{3}{2}\right)=\left(3-\frac{3}{2}\right)x\)
\(2\frac{1}{3}+x-\frac{3}{2}=3x-\frac{3}{2}x\)
\(2\frac{1}{3}-\frac{3}{2}=3x-\frac{3}{2}x-x\)
\(\frac{5}{6}=3x-\frac{3}{2}x-x\)
\(\frac{5}{6}=\left(3-\frac{3}{2}-1\right)x\)
\(\frac{5}{6}=\frac{1}{2}x\)
\(x=\frac{5}{6}:\frac{1}{2}\)
\(x=\frac{5}{3}\)
b) |3x-4|+|3y+5|=0
ĐK : \(\hept{\begin{cases}\left|3x-4\right|\ge0\\\left|3y+5\right|\ge0\end{cases}}\Leftrightarrow\left|3x-4\right|+\left|3y+5\right|\ge0\)
Mà |3x-4|+|3y+5|=0 nên :
\(\Rightarrow\hept{\begin{cases}3x-4=0\\3y+5=0\end{cases}}\Rightarrow\hept{\begin{cases}3x=4\\3y=-5\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{4}{3}\\y=\frac{-5}{3}\end{cases}}\)
Vậy x=4/3 ; y=-5/3
c) \(\left|x+\frac{19}{5}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2004\right|=0\)
ĐK : \(\hept{\begin{cases}\left|x+\frac{19}{5}\right|\ge0\\\left|y+\frac{1890}{1975}\right|\ge0\\\left|z-2004\right|\ge0\end{cases}}\Leftrightarrow\left|x+\frac{19}{5}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2004\right|\ge0\)
Mà \(\left|x+\frac{19}{5}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2004\right|=0\) nên :
\(\Rightarrow\hept{\begin{cases}x+\frac{19}{5}=0\\y+\frac{1890}{1975}=0\\z-2004=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{19}{5}\\y=-\frac{1890}{1975}\\z=2004\end{cases}}\)
Vậy ...
b) Ta có : \(x=2019\) \(\Rightarrow x+1=2020\) Thay vào biểu thức ta được :
( Chỗ nào có 2020 thay thành x + 1 )
\(x^9-\left(x+1\right).x^8+\left(x+1\right).x^7-....-\left(x+1\right).x^2+\left(x+1\right).x\)
\(=x^9-x^9-x^8+x^8+x^7-...-x^3-x^2+x^2+x\)
\(=x\\ \)
\(=2019\)
Vậy : biểu thức trên bằng 2019 với x = 2019.
Ta có: 25y chia hết cho 5
126 chia 5 dư 1 => \(15^x\)chia 5 dư 1 => x=0
Thay vào đề ta được
\(25y+15^0=126\)
\(\Rightarrow25y+1=126\)
\(\Rightarrow25x=125\)
\(\Rightarrow y=5\)
2019x^2 - 2020x + 1 = 0
=> 2019x^2 - 2019x - x + 1 = 0
=> 2019x(x - 1) - (x - 1) = 0
=> (2019x - 1)(x - 1) = 0
=> 2019x - 1 =0 hoặc x - 1 = 0
=> 2019x = 1 hoặc x = 1
=> x = 1/2019 hoặc x = 1