K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2017

Biểu thức bằng 0 khi tử bằng 0 và mẫu khác 0

Ta có: 2x + 4 = 0 => x = - 2 (thỏa mãn điều kiện)

Vậy với x = - 2 thì giá trị của biểu thức bằng 0.

27 tháng 12 2019

10 tháng 11 2021

\(a,\Leftrightarrow\left(x+2\right)\left(x+2-x+3\right)=0\\ \Leftrightarrow5\left(x+2\right)=0\Leftrightarrow x=-2\\ b,\Leftrightarrow2x\left(x-1\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\\ c,\Leftrightarrow\left(x-1-2x-1\right)\left(x-1+2x+1\right)=0\\ \Leftrightarrow3x\left(-x-2\right)=0\Leftrightarrow-3x\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

24 tháng 10 2021

1) \(\Rightarrow x^2+4x+4-x^2+1=9\)

\(\Rightarrow4x=4\Rightarrow x=1\)

2) \(\Rightarrow x\left(2x+7\right)+2\left(2x+7\right)=0\)

\(\Rightarrow\left(2x+7\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=-2\end{matrix}\right.\)

3) \(\Rightarrow x^3+3x^2+3x+1-x^3-3x^2=2\)

\(\Rightarrow3x=1\Rightarrow x=\dfrac{1}{3}\)

29 tháng 12 2023

a: (x-2)(x+2)-(x+1)2=1

=>\(x^2-4-\left(x^2+2x+1\right)=1\)

=>\(x^2-4-x^2-2x-1=1\)

=>-2x-5=1

=>-2x=6

=>\(x=\dfrac{6}{-2}=-3\)

b: Sửa đề:\(x^3-8-\left(x-2\right)\left(x-4\right)=0\)

=>\(\left(x^3-8\right)-\left(x-2\right)\left(x-4\right)=0\)

=>\(\left(x-2\right)\left(x^2+2x+4\right)-\left(x-2\right)\left(x-4\right)=0\)

=>\(\left(x-2\right)\left(x^2+2x+4-x+4\right)=0\)

=>\(\left(x-2\right)\left(x^2+x\right)=0\)

=>x(x+1)(x-2)=0

=>\(\left[{}\begin{matrix}x=0\\x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=2\end{matrix}\right.\)

c: 3x(x-1)+1-x=0

=>3x(x-1)-(x-1)=0

=>(x-1)(3x-1)=0

=>\(\left[{}\begin{matrix}x-1=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)

25 tháng 10 2021

a) \(\left(x-1\right)^2+\left(3-x\right)\left(3+x\right)=0\)

\(\Rightarrow x^2-2x+1+9-x^2=0\)

\(\Rightarrow2x=10\Rightarrow x=5\)

b) \(\left(x-2\right)^2-\left(2x+1\right)^2=0\)

\(\Rightarrow\left(x-2-2x-1\right)\left(x-2+2x+1\right)=0\)

\(\Rightarrow-\left(x+3\right)\left(3x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{3}\end{matrix}\right.\)

25 tháng 10 2021

a) \(\left(x-1\right)^2+\left(3-x\right)\left(3+x\right)=0\\ \Leftrightarrow x^2-2x+1+9-x^2=0\\ \Leftrightarrow-2x=-10\\ \Leftrightarrow x=5\)

b) \(\left(x-2\right)^2-\left(2x+1\right)^2=0\\ \Leftrightarrow x^2-4x+4-4x^2-4x-1=0\\ \Leftrightarrow-3x^2-8x+3=0\\ \Leftrightarrow3x^2+8x-3=0\\ \Leftrightarrow\left(3x^2+9x\right)-\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(3x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{3}\end{matrix}\right.\)

23 tháng 8 2021

3) \(x\left(x-4\right)+\left(x-4\right)^2=0\Leftrightarrow\left(x-4\right)\left(x+x-4\right)=0\Leftrightarrow2\left(x-4\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)

23 tháng 8 2021

4x.(x+1)-8(x+1)=0

(4x-8)(x+1)=0

suy ra x=2 hoặc x=-1

4 tháng 1 2022

\(a,\Leftrightarrow x\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\\ b,\Leftrightarrow3x\left(x-1\right)+\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(3x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\\ c,\Leftrightarrow\left(x+2\right)\left(2x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{2}\end{matrix}\right.\)

29 tháng 11 2023

a: \(x^3-4x^2-x+4=0\)

=>\(\left(x^3-4x^2\right)-\left(x-4\right)=0\)

=>\(x^2\left(x-4\right)-\left(x-4\right)=0\)

=>\(\left(x-4\right)\left(x^2-1\right)=0\)

=>\(\left[{}\begin{matrix}x-4=0\\x^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x^2=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;1;-1\right\}\)

b: Sửa đề: \(x^3+3x^2+3x+1=0\)

=>\(x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=0\)

=>\(\left(x+1\right)^3=0\)

=>x+1=0

=>x=-1

c: \(x^3+3x^2-4x-12=0\)

=>\(\left(x^3+3x^2\right)-\left(4x+12\right)=0\)

=>\(x^2\cdot\left(x+3\right)-4\left(x+3\right)=0\)

=>\(\left(x+3\right)\left(x^2-4\right)=0\)

=>\(\left(x+3\right)\left(x-2\right)\left(x+2\right)=0\)

=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)

d: \(\left(x-2\right)^2-4x+8=0\)

=>\(\left(x-2\right)^2-\left(4x-8\right)=0\)

=>\(\left(x-2\right)^2-4\left(x-2\right)=0\)

=>\(\left(x-2\right)\left(x-2-4\right)=0\)

=>(x-2)(x-6)=0

=>\(\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)