Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,3\left(2x-3\right)+2\left(2-x\right)=-3\\ \Leftrightarrow6x-9+4-2x=-3\\ \Leftrightarrow4x=2\\ \Leftrightarrow x=\dfrac{1}{2}\\ b,x\left(5-2x\right)+2x\left(x-1\right)=13\\ \Leftrightarrow5x-2x^2+2x^2-2x=13\\ \Leftrightarrow3x=13\\ \Leftrightarrow x=\dfrac{13}{3}\\ c,5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\\ \Leftrightarrow5x^2-5x-5x^2-3x+14=6\\ \Leftrightarrow-8x=-8\\ \Leftrightarrow x=1\\ d,3x\left(2x+3\right)-\left(2x+5\right)\left(3x-2\right)=8\\ \Leftrightarrow6x^2+9x-6x^2-11x+10=8\\ \Leftrightarrow-2x=-2\\ \Leftrightarrow x=1\)
\(e,2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\\ \Leftrightarrow10x-16-12x+15=12x-16+11\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{2}{7}\\ f,2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\\ \Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\\ \Leftrightarrow-x^3-8=0\\ \Leftrightarrow-\left(x^3+8\right)=0\\ \Leftrightarrow-\left(x+2\right)\left(x^2-2x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x\in\varnothing\left(x^2-2x+4=\left(x-1\right)^2+3>0\right)\end{matrix}\right.\)
Bài 4:
a: Ta có: \(3\left(2x-3\right)-2\left(x-2\right)=-3\)
\(\Leftrightarrow6x-9-2x+4=-3\)
\(\Leftrightarrow4x=2\)
hay \(x=\dfrac{1}{2}\)
b: Ta có: \(x\left(5-2x\right)+2x\left(x-1\right)=13\)
\(\Leftrightarrow5x-2x^2+2x^2-2x=13\)
\(\Leftrightarrow3x=13\)
hay \(x=\dfrac{13}{3}\)
c: Ta có: \(5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\)
\(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)
\(\Leftrightarrow-8x=-8\)
hay x=1
Ta có 2( 5x - 8 ) - 3( 4x - 5 ) = 4( 3x - 4 ) + 11
⇔ 2.5x - 2.8 - 3.4x - 3.( - 5 ) = 4.3x - 4.4 + 11
⇔ - 2x - 1 = 12x - 5 ⇔ 12x + 2x = - 1 + 5
⇔ 14x = 4 ⇔ x = 2/7.
Vậy giá trị x cần tìm là x =2/7
`2//(5x-8)-3(4x-5)=4(3x-4)`
`<=>5x-8-12x+15=12x-16`
`<=>-19x=-23`
`<=>x=23/19` Vậy `x=23/19`
`3//2(x^3-1)-2x^2(x+2x^4)+(4x^5+4)x=6`
`<=>2x^3-2-2x^3-4x^6+4x^6+4x=6`
`<=>4x=8`
`<=>x=2` Vậy `x=2`
\(\dfrac{37\cdot5^4}{25^2}=\dfrac{37\cdot5^4}{5^4}=37\\ \dfrac{2^4\cdot2^6\cdot3^8\cdot9^2}{4^4\cdot3^{11}}=\dfrac{2^{10}\cdot3^8\cdot3^4}{2^8\cdot3^{11}}=2^2\cdot3=12\\ \dfrac{3\cdot9^4\cdot9^3}{3^2\cdot9}=\dfrac{3\cdot3^8\cdot3^6}{3^2\cdot3^2}=3^{11}\\ \dfrac{125\cdot5\cdot64-25^3\cdot10\cdot4}{5^7\cdot8}=\dfrac{5^3\cdot5\cdot2^6-5^6\cdot2\cdot5\cdot2^2}{5^7\cdot2^3}=\dfrac{5^4\cdot2^3\left(2^3-5^3\right)}{5^7\cdot2^3}=\dfrac{8-125}{5^3}=\dfrac{-117}{125}\)
(2\(^x\)-8)\(^3\)=(4\(^x\)+2\(^x\)+5)\(^3\)-(4\(^x\)+13)\(^3_{ }\)
(2\(^x\)-8)\(^3\)=[(4\(^x\)+2\(^x\)+5) - (4\(^x\)+13)].[(4\(^x\)... + (4\(^x\)+13)\(^2\)]
(2\(^x\) - 8)\(^3\) = (2\(^x\)-8).[(4\(^x\)+2\(^x\)+5)\(^2\)+(4\(^x\)+... + (4\(_{ }^x\)+13)\(^2\)]
2\(^x\) = 8 \(\Rightarrow\) x = 3
hoặc (2\(^x\)-8)\(^2\) = (4\(^x\)+2\(^x\)+5)\(^2\)+(4\(^x\)+2\(^x\)+5)(4\(^x\)+... + (4\(^x\)+13)\(^2\)
(4\(^x\)+2\(^x\)+5)\(^2\) - (2\(^x\)-8)\(^2\)+(4\(^x\)+2\(_{ }^x\)+5)(4\(^x\)+13) + (4\(^x\)+13)\(^2\) = 0
[(4^x+2^x+5)-(2^x-8)]*[(4^x+2^x+5)+(2^... + (4^x+3)*[(4^x+2^x+5)+(4^x+13)]=0
(4^x+13)*(4^x+2*2^x-3) + (4^x+3)*(2*4^x+2^x+18)=0
(4^x+13)[(4^x+2*2^x-3) + (2*4^x+2^x+18)]=0
4^x+13=0 (VN)
hoặc 3*4^x + 3*2^x +15=0
đặt t = 2\(^x\)( t > 0)
t\(^2\) + t + 5=0 ptvn
( Xin lỗi bạn , vì đoạn cuối mình mỏi tay nên ghi vậy đỡ nha ! (*) là dấu nhân nha bạn )
1: Ta có: \(4x^2-36=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
2: Ta có: \(\left(x-1\right)^2+x\left(4-x\right)=11\)
\(\Leftrightarrow x^2-2x+1+4x-x^2=11\)
\(\Leftrightarrow2x=10\)
hay x=5
a/ Ta có : \(49.x^2-4=0\)
\(\Rightarrow49x^2=4\)
\(\Rightarrow x^2=\frac{4}{49}\Rightarrow\orbr{\begin{cases}x=\frac{-2}{7}\\x=\frac{2}{7}\end{cases}}\)
b/ \(\left(x+3\right)^2-\left(x+2\right)\left(x-2\right)=11\)
\(\left(x+3\right)\left(x+3\right)-\left(x+2\right)\left(x-2\right)=11\)
\(\Rightarrow\left(x^2+2.3.x+3^2\right)-\left(x^2-2^2\right)=11\)
\(\Rightarrow x^2+6x+9-x^2+4=11\)
\(\Rightarrow6x+13=11\)
\(\Rightarrow6x=11-13\)
\(\Rightarrow x=\frac{-2}{6}=\frac{-1}{3}\)
c/ \(\left(2x+1\right)^2-\left(x-3\right)^2-3\left(x+5\right)\left(x-5\right)=5\)
\(\Rightarrow\left(2x+1\right)\left(2x+1\right)-\left(x-3\right)\left(x-3\right)-3\left[\left(x+5\right)\left(x-5\right)\right]=5\)
\(\Rightarrow\left(4x^2+2.2x+1\right)-\left(x^2-2.3x+9\right)-3\left(x^2-25\right)\)\(=5\)
\(\Rightarrow\left(4x^2+4x+1\right)-\left(x^2-6x+9\right)-\left(3x^2-75\right)=5\)
\(\Rightarrow4x^2+4x+1-x^2+6x-9-3x^2+75=5\)
\(\Rightarrow\left(4x^2-x^2-3x^2\right)+\left(4x+6x\right)+\left(1-9+75\right)=5\)
\(\Rightarrow10x+67=5\)
\(\Rightarrow10x=5-67=-62\)
\(\Rightarrow x=\frac{-62}{10}=\frac{-31}{5}\)
d/ \(\left(3x+1\right)\left(3x-1\right)=8\)
\(\Rightarrow9x^2-1=8\)
\(\Rightarrow9x^2=8+1=9\)
\(\Rightarrow x^2=\frac{9}{9}=1\Leftrightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)
Ai đó bấm hộ mình cái nút đúng đi!
Ta có : 49x2 - 4 = 0
=> 49x2 = 4
=> x2 = 196
=> x2 = 142 ; (-14)2
=> x = 14 ; -14
Ta có 2( 5x - 8 ) - 3( 4x - 5 ) = 4( 3x - 4 ) + 11
⇔ 2.5x - 2.8 - 3.4x - 3.( - 5 ) = 4.3x - 4.4 + 11
⇔ 10x - 16 - 12x + 15 = 12x - 16 + 11
⇔ - 2x - 1 = 12x - 5 ⇔ 12x + 2x = - 1 + 5
⇔ 14x = 4 ⇔ x = 2/7.
Vậy giá trị x cần tìm là x = 2/7