Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn gõ lại đề đi :v
Đọc chả hiểu đề gì cả ... đề k có x
Mà phía dưới có cái đáp số x= ... là sao ??
a)(\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{11.12}\)). x=\(\frac{1}{3}\)
(1-\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{11}_{ }+\frac{1}{12}\)).x=\(\frac{1}{3}\)
(1+\(\frac{1}{12}\)).x=\(\frac{1}{3}\)
x=\(\frac{1}{3}:\frac{13}{12}\)
x=\(\frac{4}{13}\)
Mk sửa lại đề nha:
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{x\left(x-2\right)}=\frac{101}{1540}\)
\(\Leftrightarrow\)\(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{x-2}-\frac{1}{x}\right)=\frac{101}{1540}\)
\(\Leftrightarrow\)\(\frac{1}{3}-\frac{1}{x}=\frac{101}{1540}:\frac{1}{2}=\frac{101}{770}\)
\(\Leftrightarrow\)\(\frac{1}{x}=\frac{1}{3}-\frac{101}{770}=\frac{467}{2310}\)
\(\Leftrightarrow\)\(x=\frac{2310}{467}\)
P/S: Tham khảo nhé!!!
1/2(2/3.5+2/5.7+2/7.9+...+2/(2x+1)(2x+3))=15/93
1/2(1/3-1/5+1/5-1/7+1/7-1/9+...+1/2x+1-1/2x+3)=15/93
1/2(1/3-1/2x+3)=15/93
=>1/3-1/2x+3=10/31
=>1/2x+3=1/93
=>2x+3=93
2x=93-3=90
=>x=45
Đặt \(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)
\(\Rightarrow2A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{10}{31}\)
\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\frac{1}{2x+3}=\frac{1}{3}-\frac{10}{31}\)
\(\frac{1}{2x+3}=\frac{1}{93}\)
\(\Rightarrow2x+3=93\)
\(2x=90\)
\(x=45\)
Vậy \(x=45\).
2\3x-780\11:[13\2.(1\3.5+1\5.7+1\7.9+1\9.11]=-5
2\3x-780\11:[13\2.(1\3-1\5+1\5-1\7+....+1\9-1\11)]=-5
2\3x-780\11:[13\2.(1\3-1\11)]=-5
2\3x-780\11:[13\2.8\33]=-5
2\3x-780\11:52\33=-5
2\3x-525\13=-5
2\3x=-5+525\13
2\3x=460\13
x=460\13:2\3
x=690\13
\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{19\cdot21}-\frac{x}{14}=\frac{2}{-7}\)
\(\frac{1}{2}\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{19\cdot21}\right)-\frac{x}{14}=\frac{2}{-7}\)
\(\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\right)-\frac{x}{14}=\frac{2}{-7}\)
\(\frac{1}{2}\left(1-\frac{1}{21}\right)-\frac{x}{14}=\frac{2}{-7}\)
\(\frac{1}{2}\cdot\frac{20}{21}-\frac{x}{14}=\frac{2}{-7}\)
\(\frac{10}{21}-\frac{x}{14}=\frac{2}{-7}\)
\(\frac{x}{14}=\frac{10}{21}-\frac{2}{-7}\)
\(\frac{x}{14}=\frac{16}{21}\)
\(\Rightarrow x\cdot=21=14\cdot16\)
\(\Rightarrow x\cdot21=224\)
\(\Rightarrow x=\frac{224}{21}\)
\(1=\frac{x}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{17}\right)\)
\(1=\frac{x}{2}.\left(\frac{1}{3}-\frac{1}{17}\right)\)
\(1=\frac{x}{2}\cdot\frac{14}{51}\)
\(\frac{x}{2}=1:\frac{14}{51}\)
\(\frac{x}{2}=\frac{51}{14}\)
\(\frac{x.7}{14}=\frac{51}{14}\)
\(\Rightarrow x.7=51\Leftrightarrow x=\frac{51}{7}\)