Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x+y\right)^2-\left(x+y\right)^2\)
\(=\left(x+y+x+y\right)\left(x+y-x-y\right)\)
\(=\left(2x+2y\right)\left(0\right)\)
\(=0\)
hoặc cách đơn giản hơn là từ đầu bài bằng 0 luôn vì hai số giống nhau thì hiệu của chúng bằng 0
a. Thay x = -1 vào biểu thức ta được:
\(\left(-1\right)^{10}+\left(-1\right)^9+\left(-1\right)^8+...+\left(-1\right)\)
\(=1-1+1-1+...+1-1\)
\(=0\)
b. Thay x = -1 vào biểu thức ta được:
\(\left(-1\right)^{100}+\left(-1\right)^{99}+\left(-1\right)^{98}+...-1\)
\(=1-1+1-1+...+1-1\)
\(=0\)
Lời giải:
a)
Ta có: \(2^x-2^y=256=2^8\) (\(\Rightarrow x>y\) )
\(\Leftrightarrow 2^y(2^{x-y}-1)=2^8(*)\)
Vì \(x>y\Rightarrow x-y>0\Rightarrow 2^{x-y}\) chẵn. Do đó \(2^{x-y}-1\) lẻ. Kết hợp với
\((*)\Rightarrow 2^{x-y}-1=1\Leftrightarrow x-y=1\)
Khi đó: \(2^8=2^y(2^{x-y}-1)=2^y(2-1)=2^y\Rightarrow y=8\)
\(\Rightarrow x=y+1=9\)
PT có nghiệm \((x,y)=(9,8)\)
b) Giả sử \(x=y\Rightarrow 3^x+3^y= 2.3^x=3\vdots 2\) (vô lý). Do đó \(x\neq y\)
Không mất tính tổng quát giả sử \(x> y\).
PT tương đương: \(3^y(3^{x-y}+1)=3\) \((**)\)
Vì \(x>y\Rightarrow x-y\geq 1\Rightarrow 3^{x-y}\vdots 3\)
\(\Rightarrow 3^{x-y}+1\not\vdots 3\). Kết hợp với \((**)\Rightarrow 3^{x-y}+1=1\Leftrightarrow 3^{x-y}=0\) (vl)
Do đó PT vô nghiệm.
Câu c)
\((x-2)^2=3\Leftrightarrow \) \(\left[{}\begin{matrix}x-2=\sqrt{3}\\x-2=-\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow \)\(\left[{}\begin{matrix}x=2+\sqrt{3}\\x=2-\sqrt{3}\end{matrix}\right.\)
Câu d)
Nếu \(y=0\Rightarrow 2007^x=2000-2008^0=1999\Rightarrow x\not\in\mathbb{N}\)
Nếu \(y\geq 1.\)Ta thấy với mọi số tự nhiên \(x\in\mathbb{N}\Rightarrow 2007^x\) lẻ và \(2008^y\) chẵn
\(\Rightarrow 2007^x+2008^y\) lẻ. Mà 2000 là số chẵn, do đó pt vô nghiệm.
ta C/m
x^3-y^3>0
<=> (x-y)(x^2+y+1)
x-y<0 hien nhien
x^2+y+1> 0 hien nhien
(-) nhan duong (+)=(-) theo quy uoc
(-)< 0 theo quy dinh
hihihi
x=35
tick mk cho tròn 160 nha !!!