Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/2x3 +1/3x4 +..........+ 1/ax(a+1)=299/600
=>1/2-1/3+1/3-1/4+.........+ 1/a -1/a+1=299/600
=>1/2-1/a+1=299/600
=>a-1/2a=299/600
=>a=300
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{499}{500}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{499}{500}\)
\(1-\frac{1}{x+1}=\frac{499}{500}\)
\(\frac{1}{x+1}=1-\frac{499}{500}=\frac{1}{500}\)
=> x + 1 = 500
=> x = 500 - 1
=> x = 499
Vậy x = 499
1/1.2 + 1/2.3 + 1/3.4 +...+ 1/x.(x+1)=499/500
1 - 1/2 + 1/2 -1/3 + 1/3 - 1/4 +...+ 1/x -1/(x+1) =499/500
1-1/(x+1)=499/500
=>x/(x+1)=499/500
=>x=499
Ta có : A = \(\frac{1}{1\text{x}2}+\frac{1}{2\text{x}3}+\frac{1}{3\text{x}4}+...+\frac{1}{X\text{x}\left(X+1\right)}\)
A = \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\)
A = \(\frac{1}{1}-\frac{1}{x+1}\)
A = \(\frac{x}{x+1}\)
Ủng hộ mik nhá !!!!
Ta có:
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}=?\)
\(\Rightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=?\)
\(\Rightarrow\frac{1}{1}-\frac{1}{x+1}=?\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{1}-?\)
\(\Rightarrow x+1=?\Leftrightarrow x=?\)
=1/2-1/3+1/3-1/4+.......+1/a-1/a+1=49/100
1/2-1/a+1=49/100
1/a+1 = 1/2-49/100
1/a+1=1/100
a+1=100
a=99
=1/2-1/3+1/3-1/4+.......+1/a-1/a+1=49/100
1/2-1/a+1=49/100
1/a+1 = 1/2-49/100
1/a+1=1/100
a+1=100
a=99
`x/(x+1)=1/(1xx2)+1/(2xx3)+1/(3xx4)+...+1/(31xx32)`
`=>x/(x+1)=1-1/2+1/2-1/3+1/3-1/4+...+1/31-1/32`
`=>x/(x+1)=1-1/32`
`=>x/(x+1)=31/32`
`=>32x=31(x+1)`
`=>32x=31x+31`
`=>32x-31x=31`
`=>x=31`
Đặt A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3\cdot4}+...+\frac{1}{x\cdot\left(x+1\right)}=\frac{2013}{2014}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2013}{2014}\)
\(\Rightarrow A=1-\frac{1}{x+1}=\frac{2013}{2014}\)
\(\Rightarrow\frac{1}{x+1}=1-\frac{2013}{2014}\)
\(\Rightarrow\)\(\frac{1}{x+1}=\frac{1}{2014}\)
\(\Rightarrow x+1=2014\)
\(\Rightarrow x=2014-1\)
\(\Rightarrow x=2013\)
Vậy x=2013
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2013}{2014}\)
\(1-\frac{1}{x+1}=\frac{2013}{2014}\)
\(\frac{1}{x+1}=1-\frac{2013}{2014}\)
\(\frac{1}{x+1}=\frac{1}{2014}\)
Vì \(x+1\)là mẫu số nên:
\(x+1=2014\)
\(x=2014-1=2013\)
Vậy ....
P/s: Dấu . là nhân nha!
\(\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\right)\cdot100-\left[\frac{5}{2}:\left(x+\frac{206}{100}\right)\right]:\frac{1}{2}=89\)
\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\cdot100-\left[\frac{5}{2}:\left(x+\frac{103}{50}\right)\right]\cdot2=89\)
\(\left(1-\frac{1}{10}\right)\cdot100-\frac{5}{2}:\left(x+\frac{103}{50}\right)\cdot2=89\)
\(\frac{9}{10}\cdot100-\frac{5}{2}\cdot2:\left(x+\frac{103}{50}\right)=89\)
\(90-5\cdot\left(x+\frac{103}{50}\right)=89\)
\(5\cdot\left(x+\frac{103}{50}\right)=1\)
\(x+\frac{103}{50}=\frac{1}{5}\)
\(x=-\frac{93}{50}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}=\frac{299}{600}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{299}{600}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{299}{600}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{299}{600}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{600}\)
\(\Rightarrow x+1=600\)
\(\Rightarrow x=600-1\)
\(\Rightarrow x=599\)
\(Vậy\) \(x=599\)