![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
x + (x + 1) + (x + 2) + ... + (x + 2022) + 2022 = 2022
x + x + x + ... + x + 1 + 2 + 3 + ... + 2022 + 2022 = 2022 (1)
Số số hạng x:
2022 - 0 + 1 = 2023 (số)
Từ (1) ta có:
2023x + 2022.2023 : 2 + 2022 = 2022
2023x + 2045253 = 2022 - 2022
2023x = 0 - 2045253
2023x = -2045253
x = -2045253 : 2023
x = -1011
Ta có : x + (x + 1) + (x + 2) + ... + (x+2022) + 2022 = 2022
=> x + (x + 1) + (x + 2) + ... + (x + 2022) = 2022 - 2022
=> [x + (x + 2022) ] . { [ (x + 2022) - x) : 1 + 1] } : 2 = 0
( số đầu + số cuối . số số hạng : 2 )
=> (2x + 2022) . 2023 : 2 = 0
=> 2x + 2022 = 0 . 2 : 2023= 0
=> (2x + 2022) : 2 = 0 : 2
=> x + 1011 = 0 => x = -1011
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{2022}{2023}\)
\(\Rightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2022}{2023}\)
\(\Rightarrow1-\dfrac{1}{x+1}=\dfrac{2022}{2023}\)
\(\Rightarrow\dfrac{1}{x+1}=1-\dfrac{2022}{2023}\)
\(\Rightarrow\dfrac{1}{x+1}=\dfrac{1}{2023}\)
\(\Rightarrow x+1=2023\)
\(\Rightarrow x=2022\)
Vậy x = 2022
#kễnh
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{x.\left(x+1\right)}\)
= \(\dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+...+\dfrac{x+1-x}{x.\left(x+1\right)}\)
= \(\dfrac{2}{1.2}-\dfrac{1}{1.2}+\dfrac{3}{2.3}-\dfrac{2}{2.3}+...+\dfrac{x+1}{x.\left(x+1\right)}-\dfrac{x}{x.\left(x+1\right)}\)
= \(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\)
= \(1-\dfrac{1}{x+1}\) =\(\dfrac{2022}{2023}\)
= \(\dfrac{2023}{2023}-\dfrac{1}{x+1}=\dfrac{2022}{2023}\)
⇒ \(x+1=2023\)
\(x=2023-1=2022\)
![](https://rs.olm.vn/images/avt/0.png?1311)
(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = (\(\dfrac{2021}{2}+1\))+(\(\dfrac{2020}{3}+1\))+....+(\(\dfrac{1}{2022}+1\))
(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = \(\dfrac{2023}{2}\)+\(\dfrac{2023}{3}\)+....+ \(\dfrac{2023}{2022}\)
(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = 2023.( \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\))
vậy x= 2023
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\hept{\begin{cases}\left(x-1\right)^{2008}=\left[\left(x-1\right)^{1004}\right]^2\ge0\\\left(y-2\right)^{2020}=\left[\left(y-2\right)^{1010}\right]^2\ge0\\\left(x+y-z\right)^{2022}=\left[\left(x+y-z\right)^{1011}\right]^2\ge0\end{cases}}\)
=> Tổng của 3 số dương =0 khi và chỉ khi cả 3 số đều bằng 0
=> \(\hept{\begin{cases}\left[\left(x-1\right)^{1004}\right]^2=0\\\left[\left(y-2\right)^{1010}\right]^2=0\\\left[\left(x+y-z\right)^{1011}\right]^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x-1=0\\y-2=0\\x+y-z=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)
Đáp số: x=1, y=2, z=3
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{505}{1011}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{1010}{1011}\)
=>1/x+1=-1009/2022
=>x+1=-2022/1009
hay x=-3031/1009
![](https://rs.olm.vn/images/avt/0.png?1311)
1. Giải:
Do \(5x+13B\in\left(2x+1\right)\Rightarrow5x+13⋮2x+1.\)
\(\Rightarrow2\left(5x+13\right)⋮2x+1\Rightarrow10x+26⋮2x+1.\)
\(\Rightarrow5\left(2x+1\right)+21⋮2x+1.\)
Do 5(2x+1)⋮2x+1⇒ Ta cần 21⋮2x+1.
⇒ 2x+1 ϵ B(21)=\(\left\{1;3;7;21\right\}.\)
Ta có bảng:
2x+1 | 1 | 3 | 7 | 21 |
x | 0 | 1 | 3 | 10 |
TM | TM | TM | TM |
Vậy xϵ\(\left\{0;1;3;10\right\}.\)
2. Giải:
Do (2x-18).(3x+12)=0.
⇒ 2x-18=0 hoặc 3x+12=0.
⇒ 2x =18 3x =-12.
⇒ x =9 x =-4.
Vậy xϵ\(\left\{-4;9\right\}.\)
3. S= 1-2-3+4+5-6-7+8+...+2021-2022-2023+2024+2025.
S= (1-2-3+4)+(5-6-7+8)+...+(2021-2022-2023+2024)+2025 Có 506 cặp.
S= 0 + 0 + ... + 0 + 2025.
⇒S= 2025.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x-2019+\frac{x-2020}{2}=\frac{x-2021}{3}+\frac{x-2022}{4}\)
\(\Rightarrow x-2019+1+\frac{x-2020}{2}+1=\frac{x-2021}{3}+1+\frac{x-2022}{4}+1\)
\(\Rightarrow x-2018+\frac{x-2020+2}{2}=\frac{x-2021+3}{3}+\frac{x-2022+4}{4}\)
\(\Rightarrow x-2018+\frac{x-2018}{2}-\frac{x-2018}{3}-\frac{x-2018}{4}=0\)
\(\Rightarrow\left(x-2018\right)\left(1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)=0\)
\(\Rightarrow-\frac{1}{12}\left(x-2018\right)=0\Leftrightarrow x=2018\)
Bài làm :
Ta có :
\(x-2019+\frac{x-2020}{2}=\frac{x-2021}{3}+\frac{x-2022}{4}\)
\(\Rightarrow x-2019+1+\frac{x-2020}{2}+1=\frac{x-2021}{3}+1+\frac{x-2022}{4}+1\)
\(\Rightarrow x-2018+\frac{x-2020+2}{2}=\frac{x-2021+3}{3}+\frac{x-2022+4}{4}\)
\(\Rightarrow x-2018+\frac{x-2018}{2}-\frac{x-2018}{3}-\frac{x-2018}{4}=0\)
\(\Rightarrow\left(x-2018\right)\left(1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)=0\)
\(\text{Vì : }\left(1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)\ne0\Rightarrow x-2018=0\)
\(\Rightarrow x=2018\)
Vậy x=2018
![](https://rs.olm.vn/images/avt/0.png?1311)
a, ( 13.x - 122) : 5 = 5
( 13.x - 122) = 5.5
( 13.x - 122) = 25
( 13.x - 144) = 25
13.x = 25 + 144
13.x = 169
x = 169 : 13
x = 13
Vậy x = 13
b, 3.x[82 - 2.(25 - 1)] = 2022
3.x[64 - 2.(32 - 1)] = 2022
3.x[62 - 2.31] = 2022
3.x[62 - 62] = 2022
3.x.0 = 2022
3.x = 2022 : 0
3.x = 0
x = 0 : 3
x = 0
Vậy x = 0
Đây bạn nhé !!!
Chúc bạn học tốt !!!
![](https://rs.olm.vn/images/avt/0.png?1311)
1/2×X+1/3×X+X=2022
= 1/2×X+1/3×X+Xx1 =2022
= X x ( 1/2 + 1/3 + 1) = 2022
= X x 11/6 = 2022
= X = 2022: 11/6
= X = 12132/11
\(\dfrac{1}{2}\times x+\dfrac{1}{3}\times x+x=2022\\ \Rightarrow\left(\dfrac{1}{2}+\dfrac{1}{3}+1\right)\times x=2022\\\Rightarrow \left(\dfrac{3}{6}+\dfrac{2}{6}+\dfrac{6}{6}\right)\times x=2022\\ \Rightarrow\dfrac{11}{6}\times x=2022\\ \Rightarrow x=2022:\dfrac{11}{6}\\ \Rightarrow x=2022\times\dfrac{6}{11}\\ \Rightarrow x=\dfrac{12132}{11}\)