![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) (5x-1)2-(5x-4)(5x+4)=7
\(25x^2-10x+1-\left(25x^2+20x-20x-16\right)=7\)
\(25x^2-10x+1-25x^2-20x+20x+16=7\)
\(-10x=7-1-16\)
\(-10x=-10\)
\(x=1\)
b) (x+5)2-x2=45
\(x^2+10x+25-x^2=45\)
\(10x=45-25\)
\(10x=20\)
\(x=2\)
Học tốt !!! có gì ko hiểu thì họi lại nhé em
a) (5x - 1)2 - (5x - 4)(5x + 4) = 7
25x2 - 10x + 1 - 25x2 + 16 = 7
-10x + 17 = 7
-10x = 7 - 17
-10x = -10
x = 1
b) (x + 5)2 - x2 = 45
x2 + 10x + 25 - x2 = 45
10x + 25 = 45
10x = 45 - 25
10x = 20
x = 2
![](https://rs.olm.vn/images/avt/0.png?1311)
a. (5x-1)2 - (5x-4) (5x-4) +7
= (5x-1)2 - (5x-4)2 + 7
=[(5x-1)+(5x-4)] [(5x-1)-(5x-4)] +7 ( đoạn này bỏ cx đc)
=(10x-5) .3+7
=30x-15+7
=30x-8
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 :
a, \(\left(x-3\right)^2-4=0\Leftrightarrow\left(x-3\right)^2=4\Leftrightarrow\left(x-3\right)^2=\left(\pm2\right)^2\)
TH1 : \(x-3=2\Leftrightarrow x=5\)
TH2 : \(x-3=-2\Leftrightarrow x=1\)
b, \(x^2-2x=24\Leftrightarrow x^2-2x-24=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\)
TH1 : \(x-6=0\Leftrightarrow x=6\)
TH2 : \(x+4=0\Leftrightarrow x=-4\)
c, \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+2\right)\left(x-2\right)=0\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-4\right)=0\)
\(\Leftrightarrow2x+30=0\Leftrightarrow x=-15\)
d, tương tự
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a. \(x\left(x^2-25\right)-\left(x^3-2x^2+4x+2x^2-4x+8\right)=17\)
\(x^3-25x-\left(x^3+8\right)=17\)
\(x^3-25x-x^3-8=17\)
\(-25x=25\)
\(x=-1\)
c. \(6x^2-\left(6x^2-4x+15x-10\right)=7\)
\(6x^2-6x^2-11x+10=7\)
\(-11x=-3\)
\(x=\frac{3}{11}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 4 : \(\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24=0\)
Đặt \(x^2+5x=a\) . Phương trình trở thành :
\(a^2-2a-24=0\)
\(\Leftrightarrow\left(a+4\right)\left(a-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+4=0\\a-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=-4\\a=6\end{matrix}\right.\)
Với \(a=-4\)
\(\Leftrightarrow x^2+5x=-4\)
\(\Leftrightarrow x^2+5x+4=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-4\end{matrix}\right.\)
Với \(a=6\)
\(\Leftrightarrow x^2+5x=6\)
\(\Leftrightarrow x^2+5x-6=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Vậy \(S=\left\{-1;2;-3;-4\right\}\)
1) x4 - 5x2 + 4 = 0
⇔ x4 - x2 - 4x2 + 4 = 0
⇔ x2(x2 - 1) - 4(x2 - 1) = 0
⇔ (x2 - 1)(x2 - 4) = 0
⇔ \(\left\{{}\begin{matrix}x^2-1=0\\x^2-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm1\\x=\pm2\end{matrix}\right.\)
Vậy \(x=\pm1\)và \(x=\pm2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Tải app giải toán và kết bạn trao đổi nào cả nhà: https://www.facebook.com/watch/?v=485078328966618
Thụy Lâm bn dừng lại ik ko mik sẽ nhờ thầy phynit giải quyết vụ này đấy
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ \(\left(x+2\right)^2-9=0\)
<=> \(\left(x+2-3\right)\left(x+2+3\right)=0\)
<=> \(\left(x-1\right)\left(x+5\right)=0\)
<=> \(\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)
b/ \(x^2-2x+1=25\)
<=> \(\left(x-1\right)^2=25\)
<=> \(\orbr{\begin{cases}x-1=5\\x-1=-5\end{cases}}\)
<=> \(\orbr{\begin{cases}x=6\\x=-4\end{cases}}\)
\(x^4+4=5x^2\Rightarrow x^4-5x^2+4=0\Rightarrow\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=1\\x=-1\\x=-2\end{matrix}\right.\)
Ta có: \(x^4+4=5x^2\)
\(\Leftrightarrow x^4-5x^2+4=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=2\\x=-2\end{matrix}\right.\)