Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-11x-26=0\)
\(x^2-13x+2x-26=0\)
\(x.\left(x-13\right)+2.\left(x-13\right)=0\)
\(\left(x+2\right).\left(x-13\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-13=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-2\\x=13\end{cases}}\)
vậy...
P/S: lớp 7 sai sót mong thông cảm
Đề bảo pt thành nt thì ko có = 0 nhé
a, x2 - 10x + 16
= x2 - 2x - 8x + 16
= x(x - 2) - 8(x - 2) = (x-2)(x-8)
b, x2 - 11x - 26
= x2 + 2x - 13x - 26
= x(x + 2) - 13(x + 2)
= (x + 2)(x - 13)
c, 2x2 + 7x - 4
= 2x2 - x + 8x - 4
= x(2x - 1) + 4(2x - 1)
= (2x - 1)(x + 4)
d, x7 + x2 + 1
= x7 - x + x2 + x + 1
= x(x6 - 1) + x2 + x + 1
= x(x3 + 1)(x3 - 1) + (x2 + x + 1)
= x(x + 1)(x2 - x + 1)(x - 1)(x2 + x + 1) + (x2 + x + 1)
= (x2 + x + 1)[x(x + 1)(x2 - x + 1)(x - 1) + 1]
= (x2 + x + 1)[(x2 + x)(x2 - x + 1)(x - 1) + 1]
= (x2 + x + 1)[(x4 - x3 + x2 + x3 - x2 + x)(x - 1) + 1]
= (x2 + x + 1)[(x4 + x)(x - 1) + 1]
= (x2 + x + 1)(x5 - x4 + x2 - x + 1)
a) ( x - 3 )2 - 4 = 0
<=> ( x - 3 )2 = 4
<=> \(\orbr{\begin{cases}\left(x-3\right)^2=2^2\\\left(x-3\right)^2=\left(-2\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}}\)
<=> \(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)
Vậy S = { 5 ; 1 }
b) x2 - 9 = 0
<=> x2 = 9
<=> \(\orbr{\begin{cases}x^2=3^2\\x^2=\left(-3\right)^2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
Vậy S = { 3 ; -3 }
c) x( x - 2x ) - x2 - 8 = 0
<=> x2 - 2x2 - x2 - 8 = 0
<=> -2x2 - 8 = 0
<=> -2x2 = 8
<=> x2 = -4 ( vô lí )
<=> x = \(\varnothing\)
Vậy S = { \(\varnothing\)}
d) 2x( x - 1 ) - 2x2 + x - 5 = 0
<=> 2x2 - 2x - 2x2 + x - 5 = 0
<=> -x - 5 = 0
<=> -x = 5
<=> x = -5
Vậy S = { -5 }
e) x( x - 3 ) - ( x + 1 )( x - 2 ) = 0
<=> x2 - 3x - ( x2 - x - 2 ) = 0
<=> x2 - 3x - x2 + x + 2 = 0
<=> - 2x + 2 = 0
<=> -2x = -2
<=> x = 1
Vậy S = { 1 }
f) x( 3x - 1 ) - 3x2 - 7x = 0
<=> 3x2 - x - 3x2 - 7x = 0
<=> -8x = 0
<=> x = 0
Vậy S = { 0 }
2) \(x^3-6x^2+11x-6=0\)
\(\Leftrightarrow\)\(x^3-3x^2-3x^2+9x+2x-6=0\)
\(\Leftrightarrow\)\(\left(x-3\right)\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow\)\(\left(x-3\right)\left(x-2\right)\left(x-1\right)=0\)
bn giải tiếp nha
3) \(x^3-4x^2+x+6=0\)
\(\Leftrightarrow\)\(x^3-3x^2-x^2+3x-2x+6=0\)
\(\Leftrightarrow\)\(\left(x-3\right)\left(x^2-x-2\right)=0\)
\(\Leftrightarrow\)\(\left(x-3\right)\left(x-2\right)\left(x+1\right)=0\)
lm tiếp nha
4) \(x^3-3x^2+4=0\)
\(\Leftrightarrow\)\(x^3+x^2-4x^2-4x+4x+4=0\)
\(\Leftrightarrow\)\(\left(x+1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\)\( \left(x+1\right)\left(x-2\right)^2=0\)
lm tiếp nha
Mk làm mẫu 1 bài cho nha !
1. <=> (x^3-x^2)+(5x^2-5x)+(6x-6) = 0
<=> (x-1).(x^2+5x+6) = 0
<=> (x-1).[(x^2+2x)+(3x+6)] = 0
<=> (x-1).(x+2).(x+3) = 0
<=> x-1=0 hoặc x+2=0 hoặc x+3=0
<=> x=1 hoặc x=-2 hoặc x=-3
Vậy ..............
Tk mk nha
a) x(2x-7)-4x+14=0
=>x(2x-7)-2(2x-7)=0
=>(x-2)(2x-7)=0
=>x-2=0 hoặc 2x-7=0
=>x=2 hoặc x=7/2
b, x(x-1)+2x-2=0
=>x(x-1)+2(x-1)=0
=>(x+2)(x-1)=0
=>x+2=0 hoặc x-1=0
=>x=-2 hoặc x=1
c, 2x^3+3x^2+2x+3=0
=>x2(2x+3)+2x+3=0
=>(x2+1)(2x+3)=0
=>x2+1=0 hoặc 2x+3=0
Vì x2+1>0 với mọi x ->vô nghiệm
=>2x+3=0 =>x=-3/2
d, x^3+6x^2+11x+6=0
=>x3+3x3+2x+3x2+3x3+6=0
=>x(x2+3x+2)+3(x2+3x+2)=0
=>(x2+3x+2)(x+3)=0
=>[x2+x+2x+2](x+3)=0
=>[x(x+1)+2(x+1)](x+3)=0
=>(x+1)(x+2)(x+3)=0
=>x+1=0 hoặc x+2=0 hoặc x+3=0
=>x=-1 hoặc x=-2 hoặc x=-3
a) x(2x-7)-4x+14=0
=>x(2x-7)-2(2x-7)=0
=>(x-2)(2x-7)=0
=>x-2=0 hoặc 2x-7=0
=>x=2 hoặc x=7/2
b, x(x-1)+2x-2=0
=>x(x-1)+2(x-1)=0
=>(x+2)(x-1)=0
=>x+2=0 hoặc x-1=0
=>x=-2 hoặc x=1
c, 2x^3+3x^2+2x+3=0
=>x2(2x+3)+2x+3=0
=>(x2+1)(2x+3)=0
=>x2+1=0 hoặc 2x+3=0
Vì x2+1>0 với mọi x ->vô nghiệm
=>2x+3=0 =>x=-3/2
d, x^3+6x^2+11x+6=0
=>x3+3x3+2x+3x2+3x3+6=0
=>x(x2+3x+2)+3(x2+3x+2)=0
=>(x2+3x+2)(x+3)=0
=>[x2+x+2x+2](x+3)=0
=>[x(x+1)+2(x+1)](x+3)=0
=>(x+1)(x+2)(x+3)=0
=>x+1=0 hoặc x+2=0 hoặc x+3=0
=>x=-1 hoặc x=-2 hoặc x=-3
a) x(x-1) - (x+1)(x+2) = 0
x\(^2\)- x -x\(^{^2}\)-2x +x+2=0
-2x+2=0
-2x=0+2
-2x=2
x=-1
Vậy x bằng -1
a ) \(x^2-11x-26=0\)
\(\Leftrightarrow x^2-13x+2x-26=0\)
\(\Leftrightarrow x\left(x-13\right)+2\left(x-13\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-13\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-13=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=13\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-2\\x=13\end{matrix}\right.\)
b ) \(2x^2+7x-4=0\)
\(\Leftrightarrow2\left(x^2+\dfrac{7}{2}x-2\right)=0\)
\(\Leftrightarrow x^2+\dfrac{7}{2}x-2=0\)
\(\Leftrightarrow x^2+\dfrac{7}{2}x+\dfrac{49}{16}-\dfrac{81}{16}=0\)
\(\Leftrightarrow\left(x+\dfrac{7}{4}\right)^2=\dfrac{81}{16}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{7}{4}=\dfrac{9}{4}\\x+\dfrac{7}{4}=-\dfrac{9}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-4\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-4\end{matrix}\right.\)
c ) \(\left(x-2\right)\left(x-3\right)+\left(x-2\right)-1=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)+x-3=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)