K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2021

a, Nhớ t/c này nhé ! \(\left(a-b\right)^2=\left(b-a\right)^2\)

\(\left(x-3\right)=\left(3-x\right)^2\Leftrightarrow\left(x-3\right)=\left(x-3\right)^2\)

\(\Leftrightarrow\left(x-3\right)-\left(x-3\right)^2=0\Leftrightarrow\left(x-3\right)\left[1-\left(x-3\right)\right]=0\)

\(\Leftrightarrow\left(x-3\right)\left(1-x+3\right)=0\Leftrightarrow x=3;x=4\)

b, viết rõ đề ib mình giải tiếp nhé 

25 tháng 2 2021

cái 2 4 8 64 kia là gì vậy ?:))

a) ( x - 3 ) = ( 3 - x )2

<=> ( x - 3 ) - ( x - 3 )2 = 0

<=> ( x - 3 )[ 1 - ( x - 3 ) ] = 0

<=> ( x - 3 )( 1 - x + 3 ) = 0

<=> ( x - 3 )( 4 - x ) = 0

<=> x - 3 = 0 hoặc 4 - x = 0

<=> x = 3 hoặc x = 4

Vậy S = { 3 ; 4 }

b) x3 + 3x2 + 3x + 1 = 1

<=> ( x + 1 )3 - 1 = 0

<=> ( x + 1 - 1 )[ ( x + 1 )2 + x + 1 + 1 ) = 0

<=> x( x2 + 2x + 1 + x + 2 ) = 0

<=> x( x2 + 3x + 3 ) = 0

<=> x = 0 [ x2 + 3x + 3 = ( x2 + 3x + 9/4 ) + 3/4 = ( x + 3/2 )2 + 3/4 ≥ 3/4 > 0 ∀ x ]

Vậy S = { 0 }

6 tháng 2 2016

Khó thế mình không biết làm!

6 tháng 2 2016

Minh cung k biet lam vi mik  hoc lop 5

ĐỀ KIỂM TRA HKI:NĂM HỌC:2016_2017MÔN:TOÁNBài 1:Thực hiện phép tínha) 3x2 (x3 + 3x2 - 2x + 1) - 3x3b) (x - 4)(2x + 3)Bài 2:Phân tích các đa thức sau thành nhân tửa) 5x3 + 10x2 + 5xb) x(2x - 7) - 6x + 21c) x2 + 2xz - 49 + z2d) x2 + 10x + 21Bài 3:Tìm xa) (x + 2)(x2 - 2x + 4) - x(x2 + 2) = 15b) 3x(x - 5) - 6084(x - 5) = 0Bài 4:a) Sắp xếp đa thức theo lũy thừa giảm dần của biến rồi làm tính chia:(2x4 + 15x2 - 13x3 - 3 + 11x) : (x2 - 4x - 3)b)...
Đọc tiếp

ĐỀ KIỂM TRA HKI:

NĂM HỌC:2016_2017

MÔN:TOÁN

Bài 1:Thực hiện phép tính

a) 3x2 (x3 + 3x2 - 2x + 1) - 3x3

b) (x - 4)(2x + 3)

Bài 2:Phân tích các đa thức sau thành nhân tử

a) 5x3 + 10x2 + 5x

b) x(2x - 7) - 6x + 21

c) x2 + 2xz - 49 + z2

d) x2 + 10x + 21

Bài 3:Tìm x

a) (x + 2)(x2 - 2x + 4) - x(x2 + 2) = 15

b) 3x(x - 5) - 6084(x - 5) = 0

Bài 4:

a) Sắp xếp đa thức theo lũy thừa giảm dần của biến rồi làm tính chia:

(2x4 + 15x2 - 13x3 - 3 + 11x) : (x2 - 4x - 3)

b) Tính:

\(\frac{x+2}{x+3}\)+\(\frac{1-x}{x+3}\) - \(\frac{6x}{\left(x-3\right)\left(x+3\right)}\)

c) Chứng minh biểu thức sau không phụ thuộc vào biến x và y:

\(\frac{y}{x-y}\) - \(\frac{x^3-xy^2}{x^2+y^2}\)\(\left[\frac{x}{\left(x-y\right)^2}-\frac{y}{x^2-y^2}\right]\)

Bài 5:

Cho hình bình hành ABCD có BC =2AB và Â=600 .Gọi E,F theo thứ tự là trung điểm của BC và AD. Gọi I là điểm đối xứng với A qua B.

a) Tứ giác ABEF là hình gì ? Vì sao ?

b) Chứng minh tam giác ADI là tam giác đều .

c) Tứ giác AIEF là hình gì ? Vì sao ?

d) Tứ giác BICD là hình gì ? Vì sao ?

...............................................................HẾT.............................................................

 

3
20 tháng 12 2016

bạn à. ko có bài 1 điểm à

21 tháng 12 2016

công nhận chẳng thấy bài 1đ đâu.

21 tháng 12 2021

Answer:

Câu 1:

\(\left(5x-x-\frac{1}{2}\right)2x\)

\(=\left(4x-\frac{1}{2}\right)2x\)

\(=4x.2x-\frac{1}{2}.2x\)

\(=8x^2-x\)

\(\left(x^3+4x^2+3x+12\right)\left(x+4\right)\)

\(=x\left(x^3+4x^2+3x+12\right)+4\left(x^3+4x^2+3x+12\right)\)

\(=x^4+4x^3+3x^2+12x+4x^3+16x^2+12x+48\)

\(=x^4+\left(4x^3+4x^3\right)+\left(3x^2+16x^2\right)+\left(12x+12x\right)+48\)

\(=x^4+8x^3+19x^2+24x+48\)

Ta thay \(x=99\) vào phân thức \(\frac{x^2+1}{x-1}\)\(\frac{\left(99\right)^2+1}{99-1}=\frac{9802}{98}=\frac{4901}{49}\)

Ta thay \(x=4\) vào phân thức \(\frac{x^2-x}{2\left(x-1\right)}\) : \(\frac{4^2-4}{2.\left(4-1\right)}=\frac{12}{6}=2\)

\(\left(x+y\right)^2-\left(x-y\right)^2\)

\(= (x²+2xy+y²)-(x²-2xy+y²)\)

\(= x²+2xy+y²-x²+2xy-y²\)

\(= 4xy\)

\(4x^2+4x+1=\left(2x+1\right)^2=\left(2.2+1\right)^2=25\)

Câu 2:

\(x^2+x=0\)

\(\Rightarrow x\left(x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

\(x^2.\left(x-1\right)+4-4x=0\)

\(\Rightarrow x^2.\left(x-1\right)+4\left(1-x\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x^2-4\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x-2\right)\left(x+2\right)=0\)

Trường hợp 1: \(x-1=0\Rightarrow x=1\)

Trường hợp 2: \(x-2=0\Rightarrow x=2\)

Trường hợp 3: \(x+2=0\Rightarrow x=-2\)

Câu 3: Bạn xem lại đề bài nhé.

Bài 1:

a) Ta có: \(VT=\frac{-u^2+3u-2}{\left(u+2\right)\left(u-1\right)}\)

\(=\frac{-\left(u^2-3u+2\right)}{\left(u+2\right)\left(u-1\right)}\)

\(=\frac{-\left(n^2-u-2u+2\right)}{\left(u+2\right)\left(u-1\right)}\)

\(=\frac{-\left[u\left(u-1\right)-2\left(u-1\right)\right]}{\left(u+2\right)\left(u-1\right)}\)

\(=\frac{-\left(u-1\right)\left(u-2\right)}{\left(u+2\right)\left(u-1\right)}\)

\(=\frac{2-u}{u+2}\)(1)

Ta có: \(VP=\frac{u^2-4u+4}{4-u^2}\)

\(=\frac{\left(u-2\right)^2}{-\left(u-2\right)\left(u+2\right)}\)

\(=\frac{-\left(u-2\right)}{u+2}\)

\(=\frac{2-u}{u+2}\)(2)

Từ (1) và (2) suy ra \(\frac{-u^2+3u-2}{\left(u+2\right)\left(u-1\right)}=\frac{u^2-4u+4}{4-u^2}\)

b) Ta có: \(VT=\frac{v^3+27}{v^2-3v+9}\)

\(=\frac{\left(v+3\right)\left(v^3-3u+9\right)}{v^2-3u+9}\)

\(=v+3=VP\)(đpcm)

Bài 2:

a) Ta có: \(\frac{3x^2-2x-5}{M}=\frac{3x-5}{2x-3}\)

\(\Leftrightarrow\frac{3x^2-5x+3x-5}{M}=\frac{3x-5}{2x-3}\)

\(\Leftrightarrow\frac{x\left(3x-5\right)+\left(3x-5\right)}{M}=\frac{3x-5}{2x-3}\)

\(\Leftrightarrow\frac{\left(3x-5\right)\left(x+1\right)}{M}=\frac{3x-5}{2x-3}\)

\(\Leftrightarrow M=\frac{\left(3x-5\right)\left(x+1\right)\left(2x-3\right)}{3x-5}\)

\(\Leftrightarrow M=\left(x+1\right)\left(2x-3\right)\)

\(\Leftrightarrow M=2x^2-3x+2x-3\)

hay \(M=2x^2-x-3\)

Vậy: \(M=2x^2-x-3\)

b) Ta có: \(\frac{2x^2+3x-2}{x^2-4}=\frac{M}{x^2-4x+4}\)

\(\Leftrightarrow\frac{2x^2+4x-x-2}{\left(x-2\right)\left(x+2\right)}=\frac{M}{\left(x-2\right)^2}\)

\(\Leftrightarrow\frac{2x\left(x+2\right)-\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{M}{\left(x-2\right)^2}\)

\(\Leftrightarrow\frac{\left(x+2\right)\left(2x-1\right)}{\left(x+2\right)\left(x-2\right)}=\frac{M}{\left(x-2\right)^2}\)

\(\Leftrightarrow\frac{M}{\left(x-2\right)^2}=\frac{2x-1}{x-2}\)

\(\Leftrightarrow M=\frac{\left(2x-1\right)\left(x-2\right)^2}{\left(x-2\right)}\)

\(\Leftrightarrow M=\left(2x-1\right)\left(x-2\right)\)

\(\Leftrightarrow M=2x^2-4x-x+2\)

hay \(M=2x^2-5x+2\)

Vậy: \(M=2x^2-5x+2\)

Bài 3:

a) Ta có: \(\frac{x+1}{N}=\frac{x^2-2x+4}{x^3+8}\)

\(\Leftrightarrow\frac{x+1}{N}=\frac{x^2-2x+4}{\left(x+2\right)\left(x^2-2x+4\right)}\)

\(\Leftrightarrow\frac{x+1}{N}=\frac{1}{x+2}\)

\(\Leftrightarrow N=\left(x+1\right)\left(x+2\right)\)

hay \(N=x^2+3x+2\)

Vậy: \(N=x^2+3x+2\)

n) Ta có: \(\frac{\left(x-3\right)\cdot N}{3+x}=\frac{2x^3-8x^2-6x+36}{2+x}\)

\(\Leftrightarrow\frac{N\cdot\left(x-3\right)}{x+3}=\frac{2x^3+4x^2-12x^2-24x+18x+36}{x+2}\)

\(\Leftrightarrow\frac{N\cdot\left(x-3\right)}{\left(x+3\right)}=\frac{2x^2\left(x+2\right)-12x\left(x+2\right)+18\left(x+2\right)}{x+2}\)

\(\Leftrightarrow\frac{N\cdot\left(x-3\right)}{x+3}=\frac{\left(x+2\right)\left(2x^2-12x+18\right)}{x+2}\)

\(\Leftrightarrow\frac{N\cdot\left(x-3\right)}{x+3}=2x^2-12x+18\)

\(\Leftrightarrow\frac{N\cdot\left(x-3\right)}{x+3}=2x^2-6x-6x+18=2x\left(x-3\right)-6\left(x-3\right)=2\cdot\left(x-3\right)^2\)

\(\Leftrightarrow N\cdot\left(x-3\right)=\frac{2\left(x-3\right)^2}{x+3}\)

\(\Leftrightarrow N=\frac{2\left(x-3\right)^2}{x+3}:\left(x-3\right)=\frac{2\left(x-3\right)^2}{\left(x+3\right)\left(x-3\right)}\)

\(\Leftrightarrow N=\frac{2\left(x-3\right)}{x+3}\)

hay \(N=\frac{2x-6}{x+3}\)

Vậy: \(N=\frac{2x-6}{x+3}\)

4 tháng 7 2018

a) x3+ 6x2+12x+8

=(x+2)3

b)x3-3x2+3x-1

=(x-1)3

c)1-9x+27x2-27x3

=(1-3x)3

d)x+\(\frac{3}{2}x^2+\frac{3}{4}x+\frac{1}{8}\)

=(x+\(\frac{1}{2}\))3 ( phần này mik là khác đầu bài bạn đi 1 chút nhưng mik tôn trọng ý kiến của bạn hơn nên mik nghĩ mik làm sai)

e) 27x3-54x2y+36xy2-8y3

=(3x-2y)2

4 tháng 7 2018

a) x3 + 6x2 + 12x + 8

= (x^3+2^3)+6x.(x+2)

= (x+2).(x^2-2x+4)+6x(x+2)

= (x+2).(x^2+4x+4)

b) x3 - 3x2 + 3x - 1

= (x^3-1) -3x.(x-1)

= (x-1).(x^2+x+1) - 3x(x-1)

= (x-1).(x^2-2x+1)

Câu d ko hiểu đề :v

e) 27x3- 54 x2y + 36 xy2 - 8y3

= (27x^3-8y^3)-(54x^2y+36xy^2)

= (3x-2y).(9x^2+6xy+4y^2)-18xy(3x-2y)

= (3x-2y).(9x^2-12xy+4y^2)

Thế nhé :)

Bạn ghi lại đề đi bạn

2 tháng 12 2017

Câu 1:

\(\dfrac{2^{35}.45^{25}.13^{22}.35^{16}}{9^{26}.65^{22}.28^{17}.25^9}\)

\(=\dfrac{2^{35}.9^{25}.5^{25}.13^{22}.7^{16}.5^{16}}{9^{26}.13^{22}.5^{22}.2^{17}.2^{17}.7^{17}.5^9.5^9}\)

Bạn rút gọn sẽ còn lại:

\(=\dfrac{2.5}{7.9}=\dfrac{10}{63}\)

2 tháng 12 2017

Câu 4:

\(K=\left(x^2y-3\right)^2-\left(2x-y\right)^3+xy^2\left(6-x^3\right)+8x^3-6x^2y-y^3\)\(K=\left(x^2y\right)^2-2.x^2y.3+3^2-\left[\left(2x\right)^3-3.\left(2x\right)^2.y+3.2x.y^2-y^3\right]+6xy^3-x^4y^2+8x^3-6x^2y-y^3\)\(K=x^4y^2-6x^2y+9-8x^3+12x^2y-6xy^2+y^3+6xy^2-x^4y^2+8x^3-6x^2y-y^3\)\(K=9\)

29 tháng 3 2020

Bài 5 :

a, Ta có : \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)

=> \(\frac{3\left(2x+1\right)^2}{15}-\frac{5\left(x-1\right)^2}{15}=\frac{7x^2-14x-5}{15}\)

=> \(3\left(2x+1\right)^2-5\left(x-1\right)^2=7x^2-14x-5\)

=> \(12x^2+12x+3-5x^2+10x-5-7x^2+14x+5=0\)

=> \(36x+3=0\)

=> \(x=-\frac{1}{12}\)

Vậy phương trình trên có nghiệm là \(S=\left\{-\frac{1}{12}\right\}\)

b, Ta có : \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)

=> \(\frac{5\left(7x-1\right)}{30}+\frac{60x}{30}=\frac{6\left(16-x\right)}{30}\)

=> \(5\left(7x-1\right)+60x=6\left(16-x\right)\)

=> \(35x-5+60x-96+6x=0\)

=> \(101x-101=0\)

=> \(x=1\)

Vậy phương trình trên có tạp nghiệm là \(S=\left\{1\right\}\)

c, Ta có : \(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right)\left(2x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}=0\)

=> \(\frac{8\left(x-2\right)^2}{24}-\frac{3\left(2x-3\right)\left(2x+3\right)}{24}+\frac{4\left(x-4\right)^2}{24}=0\)

=> \(8\left(x-2\right)^2-3\left(2x-3\right)\left(2x+3\right)+4\left(x-4\right)^2=0\)

=> \(8\left(x^2-4x+4\right)-3\left(4x^2-9\right)+4\left(x^2-8x+16\right)=0\)

=> \(8x^2-32x+32-12x^2+27+4x^2-32x+64=0\)

=> \(-64x+123=0\)

=> \(x=\frac{123}{64}\)

Vậy phương trình có nghiệm là \(S=\left\{\frac{123}{64}\right\}\)