Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2 + x = 0
=> x( x+ 1 ) = 0
=> x = 0
hoặc x = -1
b) b, (x-1)x+2 = (x-1)x+4
=> x + 2 = x + 4
=> 0x = 2 ( ktm)
Vậy ko có giá trị x nào thoả mãn đk
d) Ta có: x-1/x+5 = 6/7
=>(x-1).7 = (x+5).6
=>7x-7 = 6x+ 30
=> 7x-6x = 7+30
=> x = 37
Vậy x = 37
e, x2/ 6= 24/25
=> x2 . 25 = 6 . 24
⇒x2.25=144⇒x2.25=144
⇒x2=144÷25⇒x2=144÷25
⇒x2=5,76=2,42=(−2,42)⇒x2=5,76=2,42=(−2,42)
⇒x∈{2,4;−2,4}⇒x∈{2,4;−2,4}
Vậy x∈{2,4;−2,4}
Bài 1:
a)\(\frac{\left(0,8\right)^5}{\left(0,4\right)^6}=\frac{\left(0,2\cdot4\right)^5}{\left(0,2\cdot2\right)^6}=\frac{\left(0,2\right)^5\cdot\left(2^2\right)^5}{\left(0,2\right)^6\cdot2^6}=\frac{\left(0,2\right)^5\cdot2^{10}}{\left(0,2\right)^6\cdot2^6}=\frac{2^4}{0,2}=\frac{16}{\frac{2}{10}}=80\)
b)\(\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}=\frac{2^{30}+2^{20}}{2^{12}+2^{22}}=\frac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(1+2^{10}\right)}=\frac{2^{20}}{2^{12}}=256\)
Bài 2:
a)\(2^{x-1}=16\)
\(\Rightarrow2^{x-1}=2^4\)
\(\Rightarrow x-1=4\Rightarrow x=5\)
b)\(\left(x-1\right)^2=25\)
\(\Rightarrow\left(x-1\right)^2=5^2=\left(-5\right)^2\)
\(\Rightarrow x-1=5\) hoặc \(x-1=-5\)
\(\Rightarrow x=6\) hoặc \(x=-4\)
Vậy \(x=6\) hoặc \(x=-4\)
c)\(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+6}\)
\(\Rightarrow\left(x-1\right)^{x+2}-\left(x-1\right)^{x+6}=0\)
\(\Leftrightarrow\left(x-1\right)^{x+2}\left[1-\left(x-1\right)^4\right]\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\left(x-1\right)^{x+2}=0\\1-\left(x-1\right)^4=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\1=\left(x-1\right)^4\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\\left(x-1\right)^4=\left(-1\right)^4=1^4\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x-1=1\\x-1=-1\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=2\\x=0\end{array}\right.\)
d)\(\left(x+20\right)^{100}+\left|y+4\right|=0\left(1\right)\)
Ta thấy: \(\begin{cases}\left(x+20\right)^{100}\ge0\\\left|y+4\right|\ge0\end{cases}\)
\(\Rightarrow\left(x+20\right)^{100}+\left|y+4\right|\ge0\left(2\right)\)
Từ (1) và (2) suy ra \(\begin{cases}\left(x+20\right)^{100}=0\\\left|y+4\right|=0\end{cases}\)
\(\Rightarrow\begin{cases}x+20=0\\y+4=0\end{cases}\)\(\Rightarrow\begin{cases}x=-20\\y=-4\end{cases}\)
a)
\(3:\left(\dfrac{9}{4}\right)=\dfrac{3}{4}:\left(6.x\right)\\ \Rightarrow3.6.x=\dfrac{3}{4}.\dfrac{9}{4}\\ x=\dfrac{3}{4}.\dfrac{9}{4}.\dfrac{1}{3}.\dfrac{1}{6}\\ x=\dfrac{3}{4.4.2}\\ x=\dfrac{3}{32}\)
b)
\(4,5:0,3=\left(5.0,09\right):\left(0,01.x\right)\\ 0,01.x.4,5=5.0,09.0,3\\ x=5.\dfrac{9}{100}.\dfrac{3}{10}.100.\dfrac{10}{45}\\ x=3\)
d)
\(\left(\dfrac{1}{9}.x\right)=\dfrac{7}{4}:\dfrac{2}{25}\\ \left(\dfrac{1}{9}.x\right)=\dfrac{7}{4}.\dfrac{25}{2}\\ x:\dfrac{7}{4}=\dfrac{25}{2}:\dfrac{1}{9}\\ x=\dfrac{25}{2}.9.\dfrac{7}{4}\\ x=\dfrac{1575}{8}\\ x=196\dfrac{7}{8}\)
e)
\(\dfrac{-2}{x}=\dfrac{-x}{\dfrac{8}{25}}\\ -x.x=-2.\dfrac{8}{25}\\ -x^2=-\dfrac{16}{25}=-\dfrac{4^2}{5^2}\\ -x^2=-\left(\dfrac{4}{5}\right)^2\\ \Rightarrow x=\dfrac{4}{5}\)
Chúc bạn học tốt
\(3:\frac{9}{4}=\frac{3}{4}:6x\)
\(\Leftrightarrow\frac{3}{4}:6x=\frac{12}{9}\)
\(\Leftrightarrow\frac{3}{4}:6x=\frac{4}{3}\)
\(\Leftrightarrow6x=\frac{3}{4}:\frac{4}{3}\)
\(\Leftrightarrow6x=\frac{9}{16}\)
\(\Leftrightarrow x=\frac{3}{32}\)
a. -3/4 x 12/-5 x (-25/6)=-15/2
b. -2 x -38/21 x -7/4 x (-3/8)=-19/8
c. (11/12: 33/16) x 3/5=4/15
d. 7/23 x [(-8/6)- 45/18]=-7/6
a) \(6.8^{x-1}+8^{x+1}=6.8^{19}+8^{21}\)
\(\Rightarrow x-1+x+1=19+21\)
\(=2x=40\)
\(\Rightarrow x=20\)
b) \(4.3^{x-1}+2.3^{x+2}=4.3^6+2.3^9\)
\(\Rightarrow x-1+x+2=6+9\)
\(\Rightarrow2x+1=15\)
\(\Rightarrow2x=14\)
\(\Rightarrow x=7\)
a) 8x : 2x = 4
=> ( 8 : 2 )x = 4
=> 4x = 41
=> x = 1
b) x6 = 25 . x4
=> x6 = ( ±5 )2 . x4
=> x6 : x4 = ( ±5 )2
=> x2 = ( ±5 )2
=> x = ±5
=>
=>
=> hoặc
+) => x = 1
+) => hoặc
=> x = 2 hoặc x = 0
Vậy x = 1 hoặc x = 2 hoặc x = 0
=>
=>
=> hoặc
+) => x = 1
+) => hoặc
=> x = 2 hoặc x = 0
Vậy x = 1 hoặc x = 2 hoặc x = 0