Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.3x+2+4.3x+1=10.36
=>2.3.3x+1+4.3x+1=10.36
=>(6+4).3x+1=10.36
=>10.3x+1=10.36
=>3x+1=36
=>x+1=6
=>x=5
A) \(2.3^{x+2}+4.3^{x+1}=10.3^6\)
=> \(2.3.3^{x+1}+4.3^{x+1}=10.3^6\)
=> \(6.3^{x+1}+4.3^{x+1}=10.3^6\)
=> \(\left(6+4\right).3^{x+1}=10.3^6\)
=> \(10.3^{x+1}=10.3^6\)
=> \(3^{x+1}=3^6\)
=> \(x+1=6\)
=> \(x=6-1\)
=> \(x=5\)
Vậy \(x=5.\)
B) \(6.8^{x-1}+8^{x+1}=6.8^{19}+8^{21}\)
=> \(6.8^{x-1}+8^{x-1}.8^2=6.8^{19}+8^{19}.8^2\)
=> \(8^{x-1}.\left(6+8^2\right)=8^{19}.\left(6+8^2\right)\)
=> \(8^{x-1}=8^{19}\)
=> \(x-1=19\)
=> \(x=19+1\)
=> \(x=20\)
Vậy \(x=20.\)
Còn câu c) thì mình đang nghĩ nhé.
Chúc bạn học tốt!
2.3x+2+4.3x+1=10.36
2.3.3x+1+4.3x+1=10.36
6.3x+1+4.3x+1=10.36
10.3x+1=10.36
=>3x+1=36
=>x+1=6 =>x=5
Ai thấy đúng cho mình nha!
\(2.3^{x+2}+4.3^{x+1}=10.3^6\)
\(2.3^{x+2}+2^2.3^{x+1}=2.5.3^6\)
\(2.3^{x+1}\left(3+2\right)=2.5.3^6\)
\(2.3^{x+1}.5=2.5.3^6\)
\(\Rightarrow x+1=6\Rightarrow x=5\)
1;Ta có\(5.3^x=5.3^4\)
\(\Rightarrow3^x=3^4\)
\(\Rightarrow x=4\)
2.Ta có \(9.5^x=6.5^6+3.5^6\)
\(\Rightarrow9.5^x=5^6.\left(6+3\right)\)
\(\Rightarrow9.5^x=9.5^6\)
\(\Rightarrow5^x=5^6\)\
\(\Rightarrow x=6\)
3, Ta có \(2.3^{x+2}+4.3^{x+1}=10.3^6\)
\(\Rightarrow3^{x+1}.\left(2.3+4\right)=10.3^6\)
\(\Rightarrow3^{x+1}.10=10.3^6\)
\(\Rightarrow3^{x+1}=3^6\)
\(\Rightarrow x+1=6\)
\(\Rightarrow x=5\)
a) 5.3x = 5.34
=> 3x=34
=> x=4
b) 9.5x=6.56+3.56
=> 9.5x = (6+3)56
=> 9.5x=9.56
=> 5x=56
=> x=6
c) 2.3x+2 + 4.3x+1 = 10.36
=> 2.3x+1.3 + 4.3x+1 = 10.36
=> 6.3x+1+4.3x+1=10.36
=> (6+4).3x+1=10.36
=> 10.3x+1=10.36
=> 3x+1=36
=> x+1=6
=> x=5
1:
\(\Leftrightarrow4\cdot3^x\cdot\dfrac{1}{9}+2\cdot3^x\cdot3=4\cdot3^4+2\cdot3^7\)
\(\Leftrightarrow3^x\cdot\left(\dfrac{4}{9}+6\right)=3^4\cdot\left(4+2\cdot3^3\right)\)
\(\Leftrightarrow3^x=729\)
hay x=6
2: \(\Leftrightarrow3^x\cdot4\cdot\dfrac{1}{3}+3^x\cdot2\cdot9=4\cdot3^6+2\cdot3^9\)
\(\Leftrightarrow3^x\cdot\dfrac{58}{3}=42282\)
=>3x=2187
hay x=7
a, Ta có \(2.3^{x+2}+4.3^{x+1}=3^6.10\)
\(\Rightarrow2.3.3^{x+1}+4.3^{x+1}=3^6.10\)
\(\Rightarrow3^{x+1}.\left(6+4\right)=3^6.10\)
\(\Rightarrow3^{x+1}.10=3^6.10\)
\(\Rightarrow3^{x+1}=3^6\)
\(\Rightarrow x+1=6\)
\(\Rightarrow x=5\)
b,\(\left(\frac{1}{3}+\frac{1}{6}\right).2^{x+4}-2^x=2^{13}-2^{16}\)
\(\Rightarrow\frac{1}{2}.2^{x+4}-2^x=2^{13}.\left(1-2^3\right)\)
\(\Rightarrow2^{x+3}-2^x=2^{13}.\left(1-2^3\right)\)
\(\Rightarrow2^x.\left(2^3-1\right)=2^{13}.\left(1-2^3\right)\)
\(\Rightarrow2^x.\left(2^3-1\right)=-2^{13}.\left(2^3-1\right)\)
\(\Rightarrow2^x=2^{-13}\)
\(\Rightarrow x=-13\)
A ) 2 . 3x+2 + 4 . 33+1 = 36 . 10
2 . 3x . 9 + 4 . 3x . 3 = 729 .10
18 . 3x + 12 . 3x = 243 . 3 . 10
30 . 3x = 243 . 30
3x = 243
x = 5
a) (2x - 3)2 = 16
=> (2x - 3)2 = 42
=> \(\orbr{\begin{cases}2x-3=4\\2x-3=-4\end{cases}}\)
=> \(\orbr{\begin{cases}2x=7\\2x=-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}\)
Vậy ...
b) 2.3x + 2 + 4. 3x + 1 = 10.36
=> 2.3x + 1. 3 + 4.3x + 1 = 10 . 36
=> 6.3x + 1 + 4.3x + 1 = 10.36
=> (6 + 4).3x + 1= 10.36
=> 10.3x + 1= 10.36
=> 3x + 1= 36
=> x + 1 = 6
=> x = 6 - 1
=> x = 5
\(a,\left(2x-3\right)^2=16\)
\(\Rightarrow\left(2x-3\right)^2=4^2\)
\(\Rightarrow2x-3=4\)
\(2x=4+3\)
\(2x=7\)
\(x=7:2\)
\(x=\frac{7}{2}\)