![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1.
\(-3x^5y^4+3x^2y^3-7x^2y^3+5x^5y^4\)
\(=(-3x^5y^4+5x^5y^4)+(3x^2y^3-7x^2y^3)\)
\(=2x^5y^4-4x^2y^3\)
2.
\(\frac{1}{2}x^4y-\frac{3}{2}x^3y^4+\frac{5}{3}x^4y-x^3y^4\)
\(=(\frac{1}{2}x^4y+\frac{5}{3}x^4y)-(\frac{3}{2}x^3y^4+x^3y^4)\)
\(=\frac{13}{6}x^4y-\frac{5}{2}x^3y^4\)
3.
\(5x-7xy^2+3x-\frac{1}{2}xy^2\)
\(=(5x+3x)-(7xy^2+\frac{1}{2}xy^2)\)
\(=8x-\frac{15}{2}xy^2\)
4.
\(\frac{-1}{5}x^4y^3+\frac{3}{4}x^2y-\frac{1}{2}x^2y+x^4y^3\)
\(=(\frac{-1}{5}x^4y^3+x^4y^3)+(\frac{3}{4}x^2y-\frac{1}{2}x^2y)\)
\(=\frac{4}{5}x^4y^3+\frac{1}{4}x^2y\)
5.
\(\frac{7}{4}x^5y^7-\frac{3}{2}x^2y^6+\frac{1}{5}x^5y^7+\frac{2}{3}x^2y^6\)
\(=(\frac{7}{4}x^5y^7+\frac{1}{5}x^5y^7)+(-\frac{3}{2}x^2y^6+\frac{2}{3}x^2y^6)\)
\(=\frac{39}{20}x^5y^7-\frac{5}{6}x^2y^6\)
6.
\(\frac{1}{3}x^2y^5(-\frac{3}{5}x^3y)+x^5y^6=(\frac{1}{3}.\frac{-3}{5})(x^2.x^3)(y^5.y)+x^5y^6\)
\(=\frac{-1}{5}x^5y^6+x^5y^6=\frac{4}{5}x^5y^6\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)Viết dưới dạng phân số rồi sử dụng tích chéo ý
b)\(\frac{-1}{7}.2^3-2x:1\frac{4}{3}=-2^{x-1}\)
\(\Rightarrow\frac{-8}{7}-2x:\frac{7}{3}=-2^{x-1}\)
\(\Rightarrow\frac{-8}{7}-\frac{6x}{7}=-2^{x-1}\)
\(\Rightarrow\frac{-8-6x}{7}=\frac{2^{x-1}}{-1}\)
\(\Rightarrow-1\left(-8-6x\right)=7.2^{x-1}\)
\(\Rightarrow6x+8=7.2^{x-1}\)
.........
![](https://rs.olm.vn/images/avt/0.png?1311)
1, \(\left(xy\right)^2-\frac{1}{2}x^2y^2+3xy^2.\left(-\frac{1}{3}x\right)\)
\(=x^2y^2-\frac{1}{2}x^2y^2-x^2y^2\)
\(=-\frac{1}{2}x^2y^2\)
2, \(4.\left(-\frac{1}{2}x\right)^2-\frac{3}{2}x.\left(-x\right)+\frac{1}{3}x^2\)
\(=x^2+\frac{3}{2}x^2+\frac{1}{3}x^2\)
\(=\frac{17}{6}x^2\)
3, \(-4.\left(2x\right)^2y^3+\frac{1}{2}xy.\left(-2xy^2\right)+\frac{1}{4}x^2y^3\)
\(=-16x^2y^3-x^2y^3+\frac{1}{4}x^2y^3\)
\(=-\frac{67}{4}x^2y^3\)
4, \(\frac{1}{3}x^4y-\frac{5}{3}x^3.\left(\frac{5}{2}xy\right)+\frac{3}{4}x^4y\)
\(=\frac{1}{3}x^4y-\frac{25}{6}x^4y+\frac{3}{5}x^4y\)
\(=-\frac{97}{30}x^4y\)
5, \(\left(-2x^3y^4\right)^2-5x^2y.\left(\frac{3}{4}x^4y^7\right)-\frac{2}{3}x^6y^8\)
\(=4x^6y^8-\frac{15}{4}x^6y^8-\frac{2}{3}x^6y^8\)
\(=-\frac{5}{12}x^6y^8\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(\Leftrightarrow4^x\left(\dfrac{3}{2}+\dfrac{5}{3}\cdot4^2\right)=4^8\left(\dfrac{3}{2}+\dfrac{5}{3}\cdot4^2\right)\)
=>4^x=4^8
=>x=8
b: \(\Leftrightarrow2^x\cdot\dfrac{1}{2}+2^x\cdot2=2^{10}\left(2^2+1\right)\)
=>2^x=2^11
=>x=11
c: =>1/6*6^x+6^x*36=6^15(1+6^3)
=>6^x=6*6^15
=>x=16
d: \(\Leftrightarrow8^x\left(\dfrac{5}{3}\cdot8^2-\dfrac{3}{5}\right)=8^9\left(\dfrac{5}{3}\cdot8^2-\dfrac{3}{5}\right)\)
=>x=9
![](https://rs.olm.vn/images/avt/0.png?1311)
- a.(3x)2=1/243x33=1/9
3x=1/3 hoặc 3x=-1/3 ( vế 2 ko có x thỏa mãn)
suy ra x=3-1
b.(5x+1)=\(\sqrt{\frac{36}{49}}\)\(\Rightarrow\)5x+1=\(\frac{4}{7}\)hoặc 5x+1=\(\frac{-4}{7}\) | |
\(\Rightarrow\)x=\(\frac{-3}{35}\)hoặc x=\(\frac{-11}{35}\) | |
c.\(\frac{6}{4}\)-10x = \(\frac{4}{5}\)-3x chuyển vế :\(\frac{6}{4}\)-\(\frac{4}{5}\)= -3x + 10x \(\frac{7}{10}\)=7x \(\Rightarrow\)x =\(\frac{7}{10}\):7 \(\Rightarrow\)x= \(\frac{1}{10}\) |
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a: \(\left(2x-1\right)^4=16\)
=>2x-1=2 hoặc 2x-1=-2
=>2x=3 hoặc 2x=-1
=>x=3/2 hoặc x=-1/2
b: \(\left(2x-y+7\right)^{2012}+\left|x-3\right|^{2013}< =0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-y+7=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2x+7=y=2\cdot3+7=13\end{matrix}\right.\)
c: \(10800=2^4\cdot3^3\cdot5^2\)
mà \(2^{x+2}\cdot3^{x+1}\cdot5^x=10800\)
nên \(\left\{{}\begin{matrix}x+2=4\\x+1=3\\x=2\end{matrix}\right.\Leftrightarrow x=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1, \(a,\left(x+1\right)^2=3\)
\(\Rightarrow x+1=\pm\sqrt{3}\)
\(\Rightarrow x=\pm\sqrt{3}-1\)
\(b,\left(x-1\right)^{x+2}=\left(x-1\right)^{x+6}\)
\(\Rightarrow\left(x-1\right)^{x+6}-\left(x-1\right)^{x+2}=0\)
\(\Rightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^4-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-1\right)^{x+2}=0\\\left(x-1\right)^4-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\\left(x-1\right)^4=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x-1=\pm1\Rightarrow x=2or\text{ }x=0\end{cases}}\)
\(c,\left(x+\frac{1}{2}\right)^2=\frac{4}{25}\)
\(\Rightarrow x+\frac{1}{2}=\pm\sqrt{\frac{4}{25}}\)
\(\Rightarrow x+\frac{1}{2}=\pm\frac{2}{5}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{1}{2}=\frac{2}{5}\\x+\frac{1}{2}=-\frac{2}{5}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{10}\\x=-\frac{9}{10}\end{cases}}\)
2, \(a,\sqrt{x}=4\)
\(\Rightarrow\sqrt{x}=\sqrt{16}\)
\(\Rightarrow x=16\)
\(b,\sqrt{x+1}=5\)
\(\Rightarrow\sqrt{x+1}=\sqrt{25}\)
\(\Rightarrow x+1=25\)
\(\Rightarrow x=24\)
\(\Rightarrow5^{\left(x+2\right)\left(x+3\right)}=1\)
\(\Rightarrow5^{\left(x+2\right)\left(x+3\right)}=5^0\)
\(\Rightarrow\left(x+2\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=-3\end{cases}}}\)
\(d,\left(2x-1\right)^{12}=\left(x+1\right)^{12}\)
\(\Rightarrow\left(2x-1\right)^{12}\div\left(x+1\right)^{12}=1\)
\(\Rightarrow\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: (x-3)2=49
=>x-3=7 hoặc x-3=-7
=>x=10 hoặc x=-4
b: \(\left(x^4\right)^2=\dfrac{x^{12}}{x^5}\)
\(\Leftrightarrow x^8-x^7=0\)
\(\Leftrightarrow x^7\left(x-1\right)=0\)
=>x=0 hoặc x=1
c: \(\Leftrightarrow x^{10}-25x^8=0\)
\(\Leftrightarrow x^8\left(x^2-25\right)=0\)
\(\Leftrightarrow x^8\left(x-5\right)\left(x+5\right)=0\)
hay \(x\in\left\{0;5;-5\right\}\)
Ta có \(x^2\ge0;\left|x-1\right|\ge0\)
\(\Rightarrow x^2+\left|x-1\right|\ge0\)
\(\Rightarrow\) |x2 + |x-1|| = x2+|x-1|
\(\Rightarrow x^2+\left|x-1\right|=x^2+2\Leftrightarrow\left|x-1\right|=2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=2\\x-1=-2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Cám ơn bạn