\(x^2-25-x-5=0\)

b) \(\left(3x-1\rig...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2017

a)  x2 - 25 - x - 5 = 0

\(\Rightarrow\)(x - 5)(x + 5) - (x + 5) = 0

\(\Rightarrow\)(x + 5)(x - 6) = 0

\(\Rightarrow\)\(\orbr{\begin{cases}x+5=0\\x-6=0\end{cases}}\)\(\Rightarrow\)\(\orbr{\begin{cases}x=-5\\x=6\end{cases}}\)

Vậy....

b) (3x - 1)2 - (x + 5)2 = 0

\(\Rightarrow\)(3x - 1 - x - 5)(3x - 1 + x + 5) = 0

\(\Rightarrow\)(2x - 6)(4x + 4) = 0

\(\Rightarrow\)8(x - 3)(x + 1) = 0

\(\Rightarrow\)\(\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}}\)\(\Rightarrow\)\(\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)

Vậy....

c)  x3 - 8 - (x - 2)(x - 12) = 0

\(\Rightarrow\)(x - 2)(x2 + 2x + 4) - (x - 2)(x - 12) = 0

\(\Rightarrow\)(x - 2)(x2 + 2x + 4 - x + 12) = 0

\(\Rightarrow\)(x - 2)(x2 - x + 16) = 0

\(\Rightarrow\)\(\orbr{\begin{cases}x-2=0\\x^2-x+16=0\end{cases}}\)

AH
Akai Haruma
Giáo viên
13 tháng 8 2018

a)

\(3x^2-5x=0\Leftrightarrow x(3x-5)=0\)

\(\Rightarrow \left[\begin{matrix} x=0\\ 3x-5=0\rightarrow x=\frac{5}{3}\end{matrix}\right.\)

b)

\(x^3-0,36x=0\Leftrightarrow x(x^2-0,36)=0\)

\(\Leftrightarrow x(x-0,6)(x+0,6)=0\)

\(\Rightarrow \left[\begin{matrix} x=0\\ x-0,6=0\\ x+0,6=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=0\\ x=0,6\\ x=-0,6\end{matrix}\right.\)

c)

\((5x+2)^2-(3x-1)^2=0\)

\(\Leftrightarrow (5x+2-3x+1)(5x+2+3x-1)=0\)

\(\Leftrightarrow (2x+3)(8x+1)=0\)

\(\Rightarrow \left[\begin{matrix} 2x+3=0\\ 8x+1=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-3}{2}\\ x=\frac{-1}{8}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
13 tháng 8 2018

d)

\(x^2-10x=-25\)

\(\Leftrightarrow x^2-10x+25=0\)

\(\Leftrightarrow x^2-2.5x+5^2=0\Leftrightarrow (x-5)^2=0\)

\(\Rightarrow x=5\)

e)

\(3(x+5)-x^2-5x=0\)

\(\Leftrightarrow 3(x+5)-x(x+5)=0\)

\(\Leftrightarrow (3-x)(x+5)=0\)

\(\Rightarrow \left[\begin{matrix} 3-x=0\rightarrow x=3\\ x+5=0\rightarrow x=-5\end{matrix}\right.\)

f)

\((x-1)^2-2(x-1)(3x+2)+(3x+2)^2=0\)

\(\Leftrightarrow [(x-1)-(3x+2)]^2=0\)

\(\Leftrightarrow (-2x-3)^2=0\Rightarrow -2x-3=0\Rightarrow x=\frac{-3}{2}\)

28 tháng 1 2017

a) \(\left(x+1\right)\left(2x-1\right)\left(-x+2\right)=0\)

\(\Leftrightarrow\left[\begin{matrix}x+1=0\\2x-1=0\\-x+2=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=-1\\x=\frac{1}{2}\\x=2\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là \(S=\left\{-1;\frac{1}{2};2\right\}\)

b) \(\left(2x-1\right)\left(3x+2\right)\left(4x-5\right)\left(x-7\right)=0\)

\(\Leftrightarrow\left[\begin{matrix}2x-1=0\\3x+2=0\\4x-5=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=\frac{1}{2}\\x=-\frac{2}{3}\\x=\frac{5}{4}\\x=7\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là \(S=\left\{\frac{1}{2};-\frac{2}{3};\frac{5}{4};7\right\}\)

c) \(x^2-6x+11=0\)

\(\Leftrightarrow x^2-6x+9+2=0\)

\(\Leftrightarrow\left(x-3\right)^2+2=0\) (vô lí)

Vậy phương trình vô nghiệm

d) \(\left(x^2+2x+3\right)\left(x^2-25\right)\left(x+19\right)=0\)

\(\Leftrightarrow\left(x^2+2x+1+2\right)\left(x+5\right)\left(x-5\right)\left(x+19\right)=0\)

\(\Leftrightarrow\left[\left(x+1\right)^2+2\right]\left(x+5\right)\left(x-5\right)\left(x+19\right)=0\)

\(\Leftrightarrow\left[\begin{matrix}x+5=0\\x-5=0\\x+19=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=-5\\x=5\\x=-19\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là \(S=\left\{\pm5;-19\right\}\)

28 tháng 1 2017

a,b,d dễ mà bạn tự làm

c,x2-6x+11=0<=> x2-6x+9+2=0

<=>(x-3)2=-2(vô lý)

vậy pt vô nghiệm

Bài 1:

a. \(\left(x-3\right)\left(x+7\right)-\left(x+5\right)\left(x-1\right)\)

\(=x^2+7x-3x-21-\left(x^2-x+5x-5\right)\)

\(=x^2 +7x-3x-21-x^2+x-5x+5\)

\(=-16\)

b. \(x^2\left(x-4\right)\left(x+4\right)-\left(x^2+1\right)\left(x^2-1\right)\)

\(=x^2\left(x^2-16\right)-\left(x^4-1\right)\)

\(=x^4-16x^2-x^4+1\)

\(=-16x^2+1\)

Bài 2:

a. \(x^2-25-\left(x+5\right)=0\)

\(\left(x-5\right)\left(x+5\right)-1\left(x-5\right)=0\)

\(\left(x+4\right)\left(x-5\right)=0\)

* \(x+4=0\)

\(x=-4\)

* \(x-5=0\)

\(x=5\)

b. \(3x\left(x-2\right)-x+2=0\)

\(3x\left(x-2\right)-1\left(x-2\right)=0\)

\(\left(3x-1\right)\left(x-2\right)=0\)

* \(3x-1=0\)

\(3x=1\)

\(x=\frac{1}{3}\)

* \(x-2=0\)

\(x=2\)

c. \(x\left(x-4\right)-2x+8=0\)

\(x\left(x-4\right)-\left(2x-2.4\right)=0\)

\(x\left(x-4\right)-2\left(x-4\right)=0\)

\(\left(x-2\right)\left(x-4\right)=0\)

* \(x-2=0\)

\(x=2\)

* \(x-4=0\)

\(x=4\)

có j sai sửa lại giùm mk nhoa

Bài 1: Phân tích đa thức thành nhân tử: a) \(2x\left(x+1\right)+2\left(x+1\right)\) b) \(y^2\left(x^2+y\right)-zx^2-zy\) c) \(4x\left(x-2y\right)+8y\left(2y-x\right)\) d) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)\) e) \(x^2-6xy+9y^2\) f) \(x^3+6x^2y+12xy^2+8y^3\) g) \(x^3-64\) h) \(125x^3+y^6\) k) \(0,125\left(a+1\right)^3-1\) t) \(x^2-2xy+y^2-xz+yz\) q) \(x^2-y^2-x+y\) p) \(a^3x-ab+b-x\) đ)...
Đọc tiếp

Bài 1: Phân tích đa thức thành nhân tử:

a) \(2x\left(x+1\right)+2\left(x+1\right)\)

b) \(y^2\left(x^2+y\right)-zx^2-zy\)

c) \(4x\left(x-2y\right)+8y\left(2y-x\right)\)

d) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)\)

e) \(x^2-6xy+9y^2\)

f) \(x^3+6x^2y+12xy^2+8y^3\)

g) \(x^3-64\)

h) \(125x^3+y^6\)

k) \(0,125\left(a+1\right)^3-1\)

t) \(x^2-2xy+y^2-xz+yz\)

q) \(x^2-y^2-x+y\)

p) \(a^3x-ab+b-x\)

đ) \(3x^2\left(a+b+c\right)+36xy\left(a+b+c\right)+108y^2\left(a+b+c\right)\)

l) \(x^2-x-6\)

i) \(x^4+4x^2-5\)

m) \(x^3-19x-30\)

j) \(x^4+x+1\)

y) \(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)

o) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

ê) \(4a^2b^2-\left(a^2+b^2+c^2\right)^2\)

w) \(\left(1+x^2\right)^2-4x\left(1-x^2\right)\)

z) \(\left(x^2-8\right)^2+36\)

u) \(81x^4+4\)

Bài 2 : Tìm x

a)\(\left(2x-1\right)^2-25=0\)

b) \(8x^3-50x=0\)

c) \(\left(x-2\right)\left(x^2+2+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)

d) \(3x\left(x-1\right)+x-1=0\)

e) \(2\left(x+3\right)-x^2-3x\) =0

f) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)

g) \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)

5
12 tháng 10 2017

Bài 1 :

a ) \(2x\left(x+1\right)+2\left(x+1\right)=\left(x+1\right)\left(2x+2\right)=2\left(x+1\right)^2\)

b ) \(y^2\left(x^2+y\right)-zx^2-zy=y^2\left(x^2+y\right)-z\left(x^2+y\right)=\left(x^2+y\right)\left(y^2-z\right)\)

c ) \(4x\left(x-2y\right)+8y\left(2y-x\right)=4x\left(x-2y\right)-8y\left(x-2y\right)=4\left(x-2y\right)^2\)

d ) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)=\left(x+1\right)\left(3x^2+3x-5x^2+7\right)=\left(x+1\right)\left(3x-2x^2+7\right)\)

e ) \(x^2-6xy+9y^2=\left(x-3x\right)^2\)

12 tháng 10 2017

Bài 1 :

f ) \(x^3+6x^2y+12xy^2+8y^3=\left(x+2y\right)^3\)

g ) \(x^3-64=\left(x-4\right)\left(x^2+4x+16\right)\)

h ) \(125x^3+y^6=\left(5x+y^2\right)\left(25x^2-5xy^2+y^4\right)\)

9 tháng 6 2017

a) \(4x^2-8x=0\)

\(\Rightarrow4x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=0\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=0+2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy \(x_1=0;x_2=2\)

b) \(\left(x+5\right)-3x\left(x+5\right)=0\)

\(\Rightarrow-3x^2-14x+5=0\)

\(\Leftrightarrow\left(-3x+1\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-3x+1=0\\x+5=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-5\end{matrix}\right.\)

Vậy \(x_1=-5;x_2=\dfrac{1}{3}\)

9 tháng 6 2017

\(a,4x^2-8x=0\Rightarrow4x\left(x-8\right)=0\Rightarrow\left[{}\begin{matrix}4x=0\\x-8=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=8\end{matrix}\right.\)\(b,\left(x+5\right)-3x\left(x+5\right)=0\Leftrightarrow\left(x+5\right)\left(1-3x\right)=0\Rightarrow\left[{}\begin{matrix}x+5=0\\1-3x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-5\\3x=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-5\\x=\dfrac{1}{3}\end{matrix}\right.\)

8 tháng 2 2018

a. \(9\left(x+2\right)-3\left(x+2\right)=0\)

\(\Leftrightarrow9x+18-3x-6=0\)

\(\Leftrightarrow6x+12=0\)

\(\Leftrightarrow x=-2\)

e. \(\left(2x-1\right)^2-45=0\)

\(\Leftrightarrow4x^2-2x+1-45=0\)

\(\Leftrightarrow4x^2-2x-44=0\)

Đến đó tự giải tiếp nha!

c. \(2\left(2x-5\right)-3x=0\)

\(\Leftrightarrow4x-10-3x=0\)

\(\Leftrightarrow x-10=0\)

\(\Leftrightarrow x=10\)

g. \(2x^2-6x=0\)

\(\Leftrightarrow2x\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

20 tháng 2 2018

sao làm nhung cau de the