Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, B(15)=\(\left\{0,15,30,45,60,75,90,...\right\}\)
Vì 40\(\le\)x\(\le\)70 => x=\(\left\{45,60\right\}\)
b,x \(⋮\)12 và 0 < x < 30
=> x\(\in\)Ư( 12) =\(\left\{1,2,3,4,6,12\right\}\)
Vì 0 < x < 30 => x=\(\left\{1,2,3,4,6,12\right\}\)
c, x\(⋮\)8 và 2 \(\le\) x \(\le\)20
=> x \(\in\)Ư(8) = \(\left\{1,2,4,8\right\}\)
Vì 2 \(\le\)x \(\le\)20 => x= \(\left\{2,4,8\right\}\)
d, x\(\in\) Ư(30) và x > 1^2
Mà Ư(30)=\(\left\{1,2,3,5,6,10,15,30\right\}\)
Vì x> 1^2 => x=\(\left\{2,3,5,6,10,15,30\right\}\)
e, 8\(⋮\) x
=> x\(\in\) B(8)
Chúc bạn học tốt , tick cho mk nhé
1.Tính hợp lý:
a. 1152 - (374 + 1152) + (374 - 65) = 1152 - 374 - 1152 + 374 - 65 = ( 1152 - 1152 ) + ( -65) + ( 374 - 374 ) = 0 + ( - 65) + 0 = -65
Bài 1 : Tính hợp lý : c. \(\dfrac{11.3^{22}.3^7-9^{15}}{\left(2.3^{14}\right)^2}\) = \(\dfrac{11.3^{29}-3^{30}}{2^2.3^{28}}\) = \(\dfrac{3^{29}.\left(11-3\right)}{2^2.3^{28}}\) = \(\dfrac{3^{29}.2^3}{2^2.3^{28}}\) = 6
2011 mũ 2 . 2011 mũ x = 2011 mũ 7
2011 mũ 2 . 2011 mũ x = 2011 mũ 2+5
2011 mũ 2 . 2011 mũ x = 2011 mũ 2 . 2011 mũ 5
2011 mũ x = 2011 mũ 5
Suy ra x = 5
a) \(2^x=32\)
Ta có: \(2^5=32\)
\(\Rightarrow2^x=2^5\)
\(\Rightarrow x=5\)
b) Sửa đề tí: \(9< 3^x< 81\)
\(\Rightarrow3^2< 3^x< 3^4\)
\(\Rightarrow2< x< 4\)
\(\Rightarrow x=\left\{3\right\}\)
Vậy x = 3
c) Ta có: \(25\le5^x\le125\)
\(\Rightarrow5^2\le5^x\le5^3\)
\(\Rightarrow2\le x\le3\)
\(\Rightarrow x=\left\{2;3\right\}\)
Vậy x = 2 hoặc x = 3
d) \(\left(x-2\right)^3\times5=40\)
\(\Rightarrow\left(x-2\right)^3=8\)
Mà \(8=2^3\Rightarrow\left(x-2\right)^3=2^3\)
Suy ra: x - 2 = 2
Vậy x = 4
a) \(3^{x+1}.15=135\)
\(\Rightarrow3^{x+1}=9\)
\(\Rightarrow3^{x+1}=3^2\)
\(\Rightarrow x+1=2\)
\(\Rightarrow x=1\)
Vậy \(x=1\)
b) \(x+2x+2^2x+....+2^{2016}x=2^{2017}-1\\ \Rightarrow x\left(2+2^2+...+2^{2016}\right)=2^{2017}-1\\ \Rightarrow x\left(2^{2017}-2\right)=2^{2017}-1\)
c) \(x\left(x-1\right)+\left(x-1\right)^2=0\\ \Rightarrow x\left(x-1\right)+\left(x-1\right)\left(x-1\right)=0\\ \Rightarrow\left(x-1\right)\left(x+\left(x-1\right)\right)=0\\ \Rightarrow\left(x-1\right)\left(2x-1\right)=0\\ \Rightarrow\begin{cases}x-1=0\\2x-1=0\end{cases}\)
d) \(2^2.2^5\le2^{x-5}\le2^{10}\\ \Rightarrow2^7\le2^{x-5}\le2^{10}\)
Bài 1: x thuộc tập hợp Z.
Bài 2:
a)
b) Để phân số đó tối giản thì ƯCLN (7n, 7n + 1) = 1
Gọi d là ƯCLN của 7n và 7n + 1, ta có:
7n chia hết cho d và 7n + 1 chia hết cho d => 7n + 1 - 7n chia hết cho d => 1 chia hết cho d => d = 1
Vậy phân số đó tối giản
a: Ta có: \(x\in B\left(15\right)\)
nên \(x\in\left\{0;15;30;45;60;75;...\right\}\)
mà 40<=x<=70
nên \(x\in\left\{45;60\right\}\)
b: \(2011^2\cdot2011^x=2011^7\)
\(\Leftrightarrow x+2=7\)
hay x=5