Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: \(5x\left(\frac{1}{5}x-2\right)+3\left(6-\frac{1}{3}x^2\right)=12\)
\(\Leftrightarrow x^2-10x+18-x^2=12\)
\(\Leftrightarrow-10x+18=12\)
\(\Leftrightarrow-10x=-6\)
hay \(x=\frac{3}{5}\)
Vậy: \(x=\frac{3}{5}\)
b) Ta có: \(7x\left(x-2\right)-5\left(x-1\right)=7x^2+3\)
\(\Leftrightarrow7x^2-14x-5x+5-7x^2-3=0\)
\(\Leftrightarrow-19x+2=0\)
\(\Leftrightarrow-19x=-2\)
hay \(x=\frac{2}{19}\)
Vậy: \(x=\frac{2}{19}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)
Ta thấy:
\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)
\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\frac{10}{11}=0\)
\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)
Bài 2:
Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)
\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)
Mà \(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(\left(\frac{1}{3}\right)^{-1}-\left(-\frac{6}{7}\right)^0+\left(\frac{1}{2}\right)^4.2^3=3-1+\frac{1}{16}.8=3-1+\frac{1}{2}=\frac{5}{2}\\ \)
b)\(2^2.2^3.\left(\frac{2}{3}\right)^{-2}=2^5.\frac{9}{4}=72\)
c)\(\left(\frac{4}{3}\right)^{-2}.\left(\frac{3}{4}\right)^3:\left(\frac{-2}{3}\right)^{-3}=\left(\frac{3}{4}\right)^2.\left(\frac{3}{4}\right)^3:\left(\frac{-2}{3}\right)^{-3}=\left(\frac{3}{4}\right)^5:\left(\frac{3}{2}\right)^3=\frac{9}{128}\)
2)
\(3^{x+1}=9^x\Leftrightarrow3^x.3=9^x\Rightarrow3=9^x:3^x\Rightarrow3=3^x\Rightarrow x=1\)
\(\left(x-0,1\right)^2=6,25\Leftrightarrow\left(x-0,1\right)^2=2,5^2\Rightarrow\left(x-0,1\right)=2,5\Rightarrow x=2,5+0,1=2,6\)
\(3^{2x-1}=243\Leftrightarrow3^{2x-1}=3^5\Rightarrow2x-1=5\Rightarrow2x=6\Rightarrow x=3\)
\(\left(4x-3\right)^4=\left(4x-3\right)^2\Rightarrow x=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a ) \(\left(\frac{2}{5}-x\right):1\frac{1}{3}+\frac{1}{2}=-4\)
\(\left(\frac{2}{5}-x\right):\frac{4}{3}+\frac{1}{2}=-4\)
\(\left(\frac{2}{5}-x\right):\frac{4}{3}=-4-\frac{1}{2}\)
\(\left(\frac{2}{5}-x\right):\frac{4}{3}=-\frac{9}{2}\)
\(\frac{2}{5}-x=-\frac{9}{2}.\frac{4}{3}\)
\(\frac{2}{5}-x=-3\)
\(x=\frac{2}{5}-\left(-3\right)\)
\(x=\frac{2}{5}+3\)
\(x=\frac{3}{5}-\frac{15}{5}\)
\(x=-\frac{12}{5}\)
Vay \(x=-\frac{12}{5}\)
b ) \(\left(-3+\frac{3}{x}-\frac{1}{3}\right):\left(1+\frac{2}{5}+\frac{2}{3}\right)=-\frac{5}{4}\)
\(\left(-3+\frac{3}{x}-\frac{1}{3}\right):\left(\frac{15}{15}+\frac{6}{15}+\frac{10}{15}\right)=-\frac{5}{4}\)
\(\left(-3+\frac{3}{x}-\frac{1}{3}\right):\left(\frac{15+6+10}{15}\right)=-\frac{5}{4}\)
\(\left(-3+\frac{3}{x}-\frac{1}{3}\right):\frac{31}{15}=-\frac{5}{4}\)
\(\left(-3+\frac{3}{x}-\frac{1}{3}\right)=-\frac{5}{4}.\frac{31}{15}\)
\(\left(-3+\frac{3}{x}-\frac{1}{3}\right)=-\frac{1}{4}.\frac{31}{3}\)
\(-3+\frac{3}{x}-\frac{1}{3}=-\frac{31}{12}\)
\(-3+\frac{3}{x}=-\frac{31}{12}+\frac{1}{2}\)
\(-3+\frac{3}{x}=-\frac{31}{12}+\frac{6}{12}\)
\(-3+\frac{3}{x}=\frac{-25}{12}\)
\(\frac{3}{x}=\frac{-25}{12}+3\)
\(\frac{3}{x}=\frac{-25}{12}+\frac{36}{12}\)
\(\frac{3}{x}=\frac{5}{6}\)
\(\frac{18}{6x}=\frac{5x}{6x}\)
Đèn dây , bạn tự làm tiếp nhé , de rồi chứ
![](https://rs.olm.vn/images/avt/0.png?1311)
1.
a) \(x\in\left\{4;5;6;7;8;9;10;11;12;13\right\}\)
b) x=0
d) \(x=\frac{-1}{35}\) hoặc \(x=\frac{-13}{35}\)
e) \(x=\frac{2}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
|5x-3| - 3x = 7
*Nếu \(x\ge\frac{3}{5}\)
5x - 3 - 3x = 7
2x = 10
x = 5 ( tm)
*Nếu \(x< \frac{3}{5}\)
3 - 5x - 3x = 7
-8x = 4
x = \(-\frac{1}{2}\)( tm )
Làm hơi khó nhìn , thông cảm. Mệt rùi :)
|x - 3| + |x - 5| - 4x = -28
*Nếu x < 3
3 - x + 5 - x - 4x = -28
-6x = -36
x = 6 ( loại do ko tm khoảng đang xét )
* nếu 3 < x < 5
x - 3 + 5 - x - 4x = -28
-4x = -30
x= \(\frac{15}{2}\) ( loại do ko tm khaongr đang xét )
*Nếu x > 5
x - 3 + x - 5 - 4x = -28
-2x = -20
x = 10 ( tm)
Vậy x =10
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a) \(\left(2-3x\right)-\left(5x+8\right)=15x\)
\(\Leftrightarrow2-3x-5x-8-15x=0\)
\(\Leftrightarrow-23x-6=0\)
\(\Leftrightarrow x=\frac{-6}{23}\)
Vậy...
b) \(3\left(x-3\right)-2\left(8-x\right)=6\)
\(\Leftrightarrow3x-9-16+2x-6=0\)
\(\Leftrightarrow5x-31=0\)
\(\Leftrightarrow x=\frac{31}{5}\)
Vậy...
c) \(\frac{7-x}{2}-\frac{2x-3}{4}=\frac{x+2}{8}-\frac{-1}{2}\)
\(\Leftrightarrow4\left(7-x\right)-2\left(2x-3\right)=x+2+4\)
\(\Leftrightarrow28-4x-4x+6-x-6=0\)
\(\Leftrightarrow-9x+28=0\)
\(\Leftrightarrow x=\frac{28}{9}\)
Vậy...
d) \(x^2\cdot\left(-4x\right)+3=0\)
\(\Leftrightarrow-4x^3=-3\)
\(\Leftrightarrow x^3=\frac{3}{4}\)
\(\Leftrightarrow x=\sqrt[3]{\frac{3}{4}}\)
Vậy...
a) \(\left(2-3x\right)-\left(5x+8\right)=15x\)
\(\Leftrightarrow2-3x-5x-8=15x\)
\(\Leftrightarrow15x+3x+5x=2-8\)
\(\Leftrightarrow23x=-6\)
\(\Leftrightarrow x=-\frac{6}{23}\)
Vậy : \(x=-\frac{6}{23}\)
b) \(3\left(x-3\right)-2\left(8-x\right)=6\)
\(\Leftrightarrow3x-9-16+2x=6\)
\(\Leftrightarrow5x=6+9+16=41\)
\(\Leftrightarrow x=\frac{41}{5}\)
Vậy : \(x=\frac{41}{5}\)
a) |7x + 1| - |5x + 6| = 0
Vì |7x - 1| \(\ge\)0\(\forall\)x
|5x + 6|\(\ge\)0 \(\forall\)x
Do đó : |7x - 1| + |5x + 6| \(\ge\)0\(\forall\)x
Và |7x - 1| + |5x + 6| = 0
<=> 7x - 1 = 0 <=> x = 1/7
và 5x + 6 = 0 và x = -6/5 (vô lí)
=> x \(\in\varnothing\)
b) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
<=> \(\frac{3}{2}x+\frac{1}{2}=4x-1\)hoặc\(\frac{3}{2}x+\frac{1}{2}=-4x+1\)
<=>\(\frac{3}{2}x-4x=\frac{-1}{2}-1\)hoặc \(\frac{3}{2}x+4x=\frac{-1}{2}+1\)
<=> \(\frac{-5}{2}x=\frac{-3}{2}\)hoặc \(\frac{11}{2}x=\frac{1}{2}\)
<=>\(x=\frac{-3}{2}:\frac{-5}{2}\)hoặc \(x=\frac{1}{2}:\frac{11}{2}\)
<=> \(x=\frac{3}{5}\)hoặc \(x=\frac{1}{11}\)