K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2018

Câu a : \(3\sqrt{x-2}-\sqrt{x^2-4}=0\) ( ĐK : \(x\ge2\) )

\(\Leftrightarrow3\sqrt{x-2}-\sqrt{\left(x+2\right)\left(x-2\right)}=0\)

\(\Leftrightarrow\sqrt{x-2}\left(3-\sqrt{x+2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=0\\3-\sqrt{x+2}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(TM\right)\\x=7\left(TM\right)\end{matrix}\right.\)

Vậy \(x=2\) hoặc \(x=7\)

28 tháng 6 2017

đề sai rồi bạn sửa lại đi rồi mình giúp

28 tháng 6 2017

sai ở đâu v bn

 

4 tháng 10 2017

\(\left(\sqrt{x+4}-2\right)\left(\sqrt{4-x}+2\right)=-2x\)

Đặt \(\hept{\begin{cases}\sqrt{4+x}=a\ge0\\\sqrt{4-x}=b\ge0\end{cases}}\) thì ta có:

\(\hept{\begin{cases}\left(a-2\right)\left(b+2\right)=b^2-a^2\left(1\right)\\8=a^2+b^2\left(2\right)\end{cases}}\)

Lấy (2) + 2.(1)  vế theo vế rút gọn ta được

\(\Leftrightarrow3b^2-a^2+4b-4a-2ab=0\)

\(\Leftrightarrow\left(b-a\right)\left(3b+a+4\right)=0\)

\(\Leftrightarrow a=b\)

\(\Rightarrow\sqrt{4+x}=\sqrt{4-x}\)

\(\Leftrightarrow x=0\)

4 tháng 10 2017

Ta có : \(\left(\sqrt{x+4}-2\right)\left(\sqrt{x+4}+2\right)=-2x\)

\(\Rightarrow\left(\sqrt{x+4}\right)^2-2^2=-2x\)

\(\Leftrightarrow x+4-4=-2x\)

=> x = -2x

=> x + 2x = 0

=> 3x = 0

=> x = 0

Vậy x = 0. 

24 tháng 2 2019

Đây là toán 9 chứ

a) Ta có: \(\left(x-\sqrt{2}\right)+3\left(x^2-2\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2}\right)+3\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(1+3x+3\sqrt{2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\sqrt{2}=0\\3x+3\sqrt{2}+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\3x=-3\sqrt{2}-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=\dfrac{-3\sqrt{2}-1}{3}\end{matrix}\right.\)

Vậy: \(S=\left\{\sqrt{2};\dfrac{-3\sqrt{2}-1}{3}\right\}\)

b) Ta có: \(x^2-5=\left(2x-\sqrt{5}\right)\left(x+\sqrt{5}\right)\)

\(\Leftrightarrow\left(x+\sqrt{5}\right)\left(x-\sqrt{5}\right)-\left(2x-\sqrt{5}\right)\left(x+\sqrt{5}\right)=0\)

\(\Leftrightarrow\left(x+\sqrt{5}\right)\left(x-\sqrt{5}-2x+\sqrt{5}\right)=0\)

\(\Leftrightarrow-x\left(x+\sqrt{5}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\x+\sqrt{5}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\sqrt{5}\end{matrix}\right.\)

Vậy: \(S=\left\{0;-\sqrt{5}\right\}\)