Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I don't now
sorry
...................
nha
b) \(\left(3x-2\right)\left(x+1\right)^2\left(3x+8\right)=-16\)
\(\Leftrightarrow\)\(\left(3x-2\right)\left(3x+3\right)^2\left(3x+8\right)+144=0\)
Đặt: \(3x+3=a\)pt trở thành:
\(\left(a-5\right)a^2\left(a+5\right)+144=0\)
\(\Leftrightarrow\)\(a^4-25a^2+144=0\)
\(\Leftrightarrow\)\(\left(a-4\right)\left(a-3\right)\left(a+3\right)\left(a+4\right)=0\)
đến đây bạn tìm a rồi tính x
c) \(\left(4x-5\right)\left(2x-3\right)\left(x-1\right)=9\)
\(\Leftrightarrow\)\(\left(4x-5\right)\left(4x-6\right)\left(4x-4\right)-72=0\)
Đặt \(4x-5=a\)pt trở thành:
\(a\left(a-1\right)\left(a+1\right)-72=0\)
\(\Leftrightarrow\)\(a^3-a-72=0\)
p/s: ktra lại đề
d) \(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2=4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)\)
\(\Leftrightarrow\)\(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2-4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)=0\)
\(\Leftrightarrow\)\(\left[\left(2x^2+x-2013\right)-2\left(x^2-5x-2012\right)\right]^2=0\)
\(\Leftrightarrow\)\(\left(11x+2011\right)^2=0\)
đến đây làm nốt
Bài 1 :
a) \(A=\left(x-3\right)^2-\left(x-5\right)\left(x+5\right)\)
\(A=x^2-6x+9-x^2+25\)
\(A=34-6x\)
b) \(B=2\left(x+y\right)\left(x-y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)
Dễ thấy đây là HĐT thứ 1
\(B=\left(x+y+x-y\right)^2\)
\(B=\left(2x\right)^2\)
\(B=4x^2\)
Bài 2 :
a) \(2x\left(x+5\right)-x^2-5x=0\)
\(2x\left(x+5\right)-x\left(x+5\right)=0\)
\(\left(x+5\right)\left(2x-2\right)=0\)
\(2\left(x+5\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+5=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-5\\x=1\end{cases}}}\)
b) \(4x\left(x-2013\right)-x+2013=0\)
\(4x\left(x-2013\right)-\left(x-2013\right)=0\)
\(\left(x-2013\right)\left(4x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2013=0\\4x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2013\\x=\frac{1}{4}\end{cases}}}\)
(2x2+x-2013)2+4 (x2-5x-2012)2= 4 (2x2+x-2013)(x2-5x-2012)
Dat \(\hept{\begin{cases}a=2x^2+x-2013\\b=x^2-5x-2012\end{cases}}\)ta co phuong trinh
(2x2+x-2013)2+4 (x2-5x-2012)2= 4 (2x2+x-2013)(x2-5x-2012)
<=>\(a^2+4b^2=4ab\)
<=>\(a^2+4b^2-4ab=0\)
<=>\(\left(a-2b\right)^2=0\)
<=>\(a=2b\)
=>\(2x^2+x-2013=2x^2-10x-4024\)
<=>\(11x=2011\)
<=>x=\(\frac{2011}{11}\)
a) ( 2x - 1 )( 2x + 1 ) - 4( x2 + x ) = 16
⇔ 4x2 - 1 - 4x2 - 4x = 16
⇔ -4x - 1 = 16
⇔ -4x = 17
⇔ x = -17/4
b) 5x( x - 2013 ) - x + 2013 = 0
⇔ 5x( x - 2013 ) - ( x - 2013 ) = 0
⇔ ( x - 2013 )( 5x - 1 ) = 0
⇔ \(\orbr{\begin{cases}x-2013=0\\5x-1=0\end{cases}}\)
⇔ \(\orbr{\begin{cases}x=2013\\x=\frac{1}{5}\end{cases}}\)
a) \(\left(2x-1\right)\left(2x+1\right)-4.\left(x^2+x\right)=16\)
\(4x^2-1-4x^2-4x=16\)
\(-1-4x=16\)
\(-4x=17\)
\(x=-\frac{17}{4}\)
b) \(5x\left(x-2013\right)-x+2013=0\)
\(\left(x-2013\right)\left(5x-1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-2013=0\\5x-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=2013\\x=\frac{1}{5}\end{cases}}}\)