K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2021

1. \(4x^2-49=0\)

\(\Leftrightarrow\left(2x+7\right)\left(2x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+7=0\Leftrightarrow x=-\dfrac{7}{2}\\2x-7=0\Leftrightarrow x=\dfrac{7}{2}\end{matrix}\right.\)

Vậy: \(x=-\dfrac{7}{2}\) hoặc \(x=\dfrac{7}{2}\)

===========

2. \(x^2+36=12x\)

\(\Leftrightarrow x^2-12x+36=0\)

\(\Leftrightarrow\left(x-6\right)^2=0\)

\(\Leftrightarrow x=6\)

Vậy: \(x=6\)

===========

3. \(10\left(x-5\right)-8x\left(5-x\right)=0\)

\(\Leftrightarrow10\left(x-5\right)+8x\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(10+8x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\Leftrightarrow x=5\\10+8x=0\Leftrightarrow x=-\dfrac{5}{4}\end{matrix}\right.\)

Vậy: \(x=5\) hoặc \(x=-\dfrac{5}{4}\)

1: Ta có: \(4x^2-49=0\)

\(\Leftrightarrow\left(2x-7\right)\left(2x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

2: Ta có: \(x^2+36=12x\)

\(\Leftrightarrow x^2-12x+36=0\)

\(\Leftrightarrow\left(x-6\right)^2=0\)

\(\Leftrightarrow x-6=0\)

hay x=6

 

 

2 tháng 6 2018

1. \(x^6-2x^3+1=0\Leftrightarrow\left(x^3-1\right)^2=0\Leftrightarrow x=1\)

2. \(x^6+\dfrac{1}{4}x^3+\dfrac{1}{64}=0\Leftrightarrow\left(x^3\right)^2+2.x^3.\dfrac{1}{8}+\left(\dfrac{1}{8}\right)^2=0\Leftrightarrow\left(x+\dfrac{1}{8}\right)^2=0\Leftrightarrow x=-\dfrac{1}{2}\)4. \(x^3-10x^2+25x=0\Leftrightarrow x^3-5x^2-5x^2+25x=0\)

\(\Leftrightarrow x^2\left(x-5\right)-5x\left(x-5\right)=0\)

\(\Leftrightarrow x\left(x-5\right)^2=0\Leftrightarrow x=5\)

5. \(\dfrac{1}{4}x^3-3x^2+9x=0\)

\(\Leftrightarrow x\left(\dfrac{1}{4}x^2-3x+9\right)=0\)

\(\Leftrightarrow x\left[\left(\dfrac{1}{2}x\right)^2-2.\dfrac{1}{2}x.3+3^2\right]=0\)

\(\Leftrightarrow x\left(\dfrac{1}{2}x-3\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

6. \(x^5-16x=0\Leftrightarrow x\left(x^4-16\right)=0\Leftrightarrow x\left(x^2-4\right)\left(x^2+4\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)\left(x^2+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\\x^2=-4\left(l\right)\end{matrix}\right.\)

7. \(4x^2+4x-3=0\Leftrightarrow4x^2-2x^2-6x-3=0\)

\(\Leftrightarrow2x\left(2x-1\right)-3\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

8. \(4x^2+28x+48=0\Leftrightarrow4x^2+12x+14x+48=0\)

\(\Leftrightarrow4x\left(x+3\right)+12\left(x+4\right)=0\)

\(\Leftrightarrow\left(4x+12\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-4\end{matrix}\right.\)

9. \(9x^2-12x+3=0\Leftrightarrow9x^2-9x-3x+3=0\Leftrightarrow9x\left(x-1\right)-3\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(9x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)

2 tháng 6 2018

|2 - x|2 + 6x - 3 = 0

<=> (x - 2)2 + 6x - 3 = 0

<=> x2 - 4x + 4 + 6x - 3 = 0

<=> x2 + 2x + 1 = 0

<=> (x + 1)2 = 0

<=> x + 1 = 0

<=> x = -1

Bắt phải thể hiện -_-

23 tháng 7 2021

a) \(x^2-\frac{1}{49}=0\)

<=> \(\left(x-\frac{1}{7}\right)\left(x+\frac{1}{7}\right)=0\)

<=> \(\orbr{\begin{cases}x-\frac{1}{7}=0\\x+\frac{1}{7}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{7}\\x=-\frac{1}{7}\end{cases}}\)

Vậy x = \(\pm\frac{1}{7}\)

b) \(64-\frac{1}{4}x^2=0\)

<=> \(\left(8-\frac{1}{2}x\right)\left(8+\frac{1}{2}x\right)=0\)

<=> \(\orbr{\begin{cases}8-\frac{1}{2}x=0\\8+\frac{1}{2}x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=16\\x=-16\end{cases}}\)

Vậy \(x=\pm16\)

c) 9x2 + 12x + 4 = 0

<=> (3x + 2)2 = 0

<=> 3x + 2 = 0 

<=> x = -2/3

Vậy x = -2/3

e) \(x^2+\frac{1}{4}=x\) 

<=> \(x^2-x+\frac{1}{4}=0\)

<=> \(\left(x-\frac{1}{2}\right)^2=0\)

<=> \(x=\frac{1}{2}\)

Vậy \(x=\frac{1}{2}\)

23 tháng 7 2021

d, sửa đề : \(x^2+4=4x\Leftrightarrow x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)

i, \(4-\frac{12}{x}+\frac{9}{x^2}=0\)ĐK : \(x\ne0\)

Vì \(x\ne0\)Nhân 2 vế với \(x^2\)phương trình có dạng 

\(4x^2-12x+9=0\Leftrightarrow\left(2x-3\right)^2=0\Leftrightarrow x=\frac{3}{2}\)

10 tháng 9 2020

1) x3 - 4x2 - 8x + 8 

Thử với x = -2 ta có : (-2)3 - 4.(-2)2 - 8.(-2) + 8 = 0

Vậy -2 là nghiệm của đa thức . Theo hệ quả của định lí Bézout thì đa thức trên chia hết cho x + 2

Thực hiện phép chia x3 - 4x2 - 8x + 8 cho x + 2 ta được x2 - 6x + 4

=> x3 - 4x2 - 8x + 8 = ( x + 2 )( x2 - 6x + 4 )

2) 3x2 + 13x - 10

= 3x2 + 15x - 2x - 10

= 3x( x + 5 ) - 2( x + 5 )

= ( x + 5 )( 3x - 2 )

3) x( 2x - 7 ) - 7 - 4x + 14 = 0

<=> 2x2 - 7x - 4x + 7 = 0

<=> 2x2 - 11x + 7 = 0

<=> 2( x2 - 11/2x + 121/16 ) - 65/8 = 0

<=> 2( x - 11/4 )2 = 65/8

<=> ( x - 11/4 )2 = 65/16

<=> ( x - 11/4 )2 = \(\left(\pm\sqrt{\frac{65}{16}}\right)^2=\left(\pm\frac{\sqrt{65}}{4}\right)^2\)

<=> \(\orbr{\begin{cases}x-\frac{11}{4}=\frac{\sqrt{65}}{4}\\x-\frac{11}{4}=\frac{-\sqrt{65}}{4}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{11+\sqrt{65}}{4}\\x=\frac{11-\sqrt{65}}{4}\end{cases}}\)

4) 2x3 + 3x2 + 2x + 2 = 0 ( chịu không làm được ((: )

7,      4x mũ 2 - 12x + 9 - y mũ 2 =  -(y-2x+3) (y+2x-3)

8,      16x mũ 2 - 4y mũ 2 + 4y - 1 =   -(2y - 4x - 1) (2y+4x-1)

9,        25 - x mũ 2 - 12x - 36 =  -(x+1) (x+11)

10,        x mũ 2 - 9 - 5 ( x + 3 ) =  (x-8) (x+3)

bạn k cho mình nha 

chúc bạn học tốt :))))

8 tháng 8 2021

bạn kham khảo link, mình đã làm rồi nhé

Câu hỏi của Phạm Đỗ Bảo Ngọc - Toán lớp 8 - Học trực tuyến OLM 

8 tháng 8 2023

a/

\(x^3-4x^2-\left(x-4\right)=0\)

\(\Leftrightarrow x^2\left(x-4\right)-\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\\x=-1\end{matrix}\right.\)

b/

\(x^5-9x=0\)

\(\Leftrightarrow x\left(x^4-9\right)=x\left(x^2-3\right)\left(x^2+3\right)=0\)

\(\Leftrightarrow x\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\)

c/

\(\left(x^3-x^2\right)^2-4x^2+8x-4=0\)

\(\Leftrightarrow x^4\left(x-1\right)^2-4\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x^4-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x^2-2\right)\left(x^2+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\pm\sqrt{2}\end{matrix}\right.\)

8 tháng 8 2023

Sos

 

8 tháng 8 2021

6, \(x^2-1+2xy+y^2=\left(x+y\right)^2-1=\left(x+y-1\right)\left(x+y+1\right)\)

7, \(4x^2-12x+9-y^2=\left(2x-3\right)^2-y^2=\left(2x-3-y\right)\left(2x-3+y\right)\)

8, \(16x^2-4y^2+4y-1=16x^2-\left(2y-1\right)^2=\left(4x-2y+1\right)\left(4x+2y-1\right)\)

9, \(25-x^2-12x-36=25-\left(x+6\right)^2=\left(5-x-6\right)\left(5+x+5\right)=-\left(x+1\right)\left(x+10\right)\)

10, \(x^2-9-5\left(x+3\right)=\left(x-3\right)\left(x+3\right)-5\left(x+3\right)=\left(x+3\right)\left(x-8\right)\)

9 tháng 8 2021

1, \(x^3+4x^2+4x=0\Leftrightarrow x\left(x^2+4x+4\right)=0\)

\(\Leftrightarrow x\left(x+2\right)^2=0\Leftrightarrow x=-2;x=0\)

2, \(\left(x+3\right)^2-4=0\Leftrightarrow\left(x+3-2\right)\left(x+3+2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=1\)

3, \(x^4-9x^2=0\Leftrightarrow x^2\left(x^2-9\right)=0\)

\(\Leftrightarrow x^2\left(x-3\right)\left(x+3\right)=0\Leftrightarrow x=0;\pm3\)

4, \(x^2-6x+9=81\Leftrightarrow\left(x-3\right)^2=9^2\)

\(\Leftrightarrow\left(x-3-9\right)\left(x-3+9\right)=0\Leftrightarrow\left(x-12\right)\left(x+6\right)=0\Leftrightarrow x=-6;x=12\)

5, em xem lại đề nhé

9 tháng 8 2021

à lag tý @@

5, \(x^3+6x^2+9x-4x=0\Leftrightarrow x^3+6x^2+5x=0\)

\(\Leftrightarrow x\left(x^2+6x+5\right)=0\Leftrightarrow x\left(x^2+x+5x+5\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=-1;x=0\)

\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

hay \(x\in\left\{0;2\right\}\)

c: \(\Leftrightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)

=>(x-8)(3x+2)=0

=>x=8 hoặc x=-2/3

d: \(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)

=>x=2 hoặc x=1

e: \(\Leftrightarrow x\left(x^2-11x+30\right)=0\)

=>x(x-5)(x-6)=0

hay \(x\in\left\{0;5;6\right\}\)