Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow-2x+1-x-2=8\cdot\left(-4x^2+6x-2x\right)+4\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow-3x-1+32x^2-48x+16x-4x^2+8x-4=0\)
\(\Leftrightarrow28x^2-27x-5=0\)
\(\text{Δ}=\left(-27\right)^2-4\cdot28\cdot\left(-5\right)=1289>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{27-\sqrt{1289}}{56}\\x_2=\dfrac{27+\sqrt{1289}}{56}\end{matrix}\right.\)
1/ x² - 5x + 6 = 0
⇔ x² - 2x - 3x + 6 = 0
⇔ x(x - 2) - 3(x - 2) = 0
⇔ (x - 2)(x - 3) = 0
⇒S = {2 ; 3}.
1) \(x^2+5x+6=0\)
\(\Leftrightarrow x^2+2x+3x+6=0\)
\(\Leftrightarrow x\left(x+2\right)+3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+2=0\\x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-2\\x=-3\end{array}\right.\)
2) \(2\left(x+3\right)-x^2-3x=0\)
\(\Leftrightarrow2\left(x+3\right)-x\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(2-x\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+3=0\\2-x=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-3\\x=2\end{array}\right.\)
3) \(x^2+4x+3=0\)
\(\Leftrightarrow x^2+x+3x+3=0\)
\(\Leftrightarrow x\left(x+1\right)+3\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+1=0\\x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\x=-3\end{array}\right.\)
4) \(2x^2-3x-5=0\)
\(\Leftrightarrow2x^2+2x-5x-5=0\)
\(\Leftrightarrow2x\left(x+1\right)-5\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x-5\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+1=0\\2x-5=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\x=\frac{5}{2}\end{array}\right.\)
\(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}\)
\(\Leftrightarrow\frac{x-23}{24}+\frac{x-23}{25}-\frac{x-23}{26}=0\)
\(\Leftrightarrow\left(x-23\right)\left(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}\right)=0\)
\(\Leftrightarrow x-23=0\left(vì\frac{1}{24}+\frac{1}{25}-\frac{1}{26}\ne0\right)\)
\(\Leftrightarrow x=23\)
vậy................
\(\frac{201-x}{99}+\frac{203-x}{97}+\frac{205-x}{95}+3=0\)
\(\Leftrightarrow\left(\frac{201-x}{99}+1\right)+\left(\frac{203-x}{97}+1\right)+\left(\frac{205-x}{95}+1\right)=0\)
\(\Leftrightarrow\frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{95}=0\)
\(\Leftrightarrow\left(300-x\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)=0\)
\(\Leftrightarrow300-x=0\left(vì\frac{1}{99}+\frac{1}{97}+\frac{1}{95}>0\right)\)
\(\Leftrightarrow x=300\)
vậy..........
để \(\dfrac{x^3+x^2-x-1}{x^3+2x-3}=0\) thì
x3+x2-x-1=0
=>(x3+x2)-(x+1)=0
=>x2(x+1)-(x+1)=0
=>(x+1)(x2-1)=0
=>(x+1)(x-1)(x+1)=0
=>(x+1)2(x-1)=0
=>\(\left[{}\begin{matrix}x+1=0\\x-1=0\end{matrix}\right.\) =>\(\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
vậy x=-1 hoặc x=1
1,=> 36x^2-12x-36x^2+27x=30
=>15x =30
=> x =2
2,=>5x-2x^2+2x^2-2x=15
=>3x =15
=>x =5
1.
\(\Leftrightarrow4ax^2-4x+a=0\)
=> 4-4a^2>=0=> !a!<=1
GTNNA=-1 khi ? ...x=? cần thay a vào giải pt
2.
(x^2-6x+10).k=5
(y^2+1).k=5
ky^2+k-5=0
k=0=> vô nghiêm
k khác o
k(k-5)<=0=>0<k<=5
GTLN=5
a/ (4x-1)²-(4x-5)(4x+5)=3
x = 23/8
b/(x+2)³-(x³+8)=0
x = -2
x = 0