K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{3x^6-4x^3}{x^3}-\dfrac{\left(3x+1\right)^2}{3x+1}-\dfrac{3x^7}{x^5}=0\)

\(\Leftrightarrow3x^3-4-3x-1-3x^2=0\)

\(\Leftrightarrow3x^3-3x^2-3x-5=0\)

\(\Leftrightarrow x\simeq1,9506\)

13 tháng 6 2020

Cảm ơn diễn quỳnh

13 tháng 6 2020

Mình là diễm quỳnh chứ không phải diễn quỳnh nha bạnkhocroi

a) x2 - 5x - 6 = 0

=> x2 - 2x - 3x - 6 = 0

=> (x2 - 2x) + (-3x - 6) = 0

=> x(x - 2) - 3 (x - 2) = 0

=> (x - 2) (x - 3) = 0

=> x - 2 = 0 => x = 2

     x - 3 = 0 => x = 3

còn lại tương tự nhé!! 46566578768698945635655675656788787868789789879789098089364556546

12 tháng 8 2016

Bạn giải giúp mình mấy câu kia được k=)))

9 tháng 6 2021

a) \(2\chi-3=3\left(\chi+1\right)\)

\(\Leftrightarrow2\chi-3=3\chi+3\)

\(\Leftrightarrow2\chi-3\chi=3+3\)

\(\Leftrightarrow\chi=-6\)

Vậy phương trình có tập nghiệm S= \(\left\{-6\right\}\)

\(3\chi-3=2\left(\chi+1\right)\)

\(\Leftrightarrow3\chi-3=2\chi+2\)

\(\Leftrightarrow3\chi-2\chi=2+3\)

\(\Leftrightarrow\chi=5\)

Vậy phương trình có tập nghiệm S= \(\left\{5\right\}\)

b) \(\left(3\chi+2\right)\left(4\chi-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3\chi+2=0\\4\chi-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3\chi=-2\\4\chi=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\chi=\dfrac{-2}{3}\\\chi=\dfrac{5}{4}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S= \(\left\{\dfrac{-2}{3};\dfrac{5}{4}\right\}\)

\(\left(3\chi+5\right)\left(4\chi-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3\chi+5=0\\4\chi-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3\chi=-5\\4\chi=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\chi=\dfrac{-5}{3}\\\chi=\dfrac{1}{2}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S= \(\left\{\dfrac{-5}{3};\dfrac{1}{2}\right\}\)

c) \(\left|\chi-7\right|=2\chi+3\)

Trường hợp 1: 

Nếu \(\chi-7\ge0\Leftrightarrow\chi\ge7\)

Khi đó:\(\left|\chi-7\right|=2\chi+3\)

 \(\Leftrightarrow\chi-7=2\chi+3\)

\(\Leftrightarrow\chi-2\chi=3+7\)

\(\Leftrightarrow\chi=-10\) (KTMĐK)

Trường hợp 2:

Nếu \(\chi-7\le0\Leftrightarrow\chi\le7\)

Khi đó: \(\left|\chi-7\right|=2\chi+3\)

\(\Leftrightarrow-\chi+7=2\chi+3\)

\(\Leftrightarrow-\chi-2\chi=3-7\)

\(\Leftrightarrow-3\chi=-4\)

\(\Leftrightarrow\chi=\dfrac{4}{3}\)(TMĐK)

Vậy phương trình có tập nghiệm S=\(\left\{\dfrac{4}{3}\right\}\)

\(\left|\chi-4\right|=5-3\chi\)

Trường hợp 1:  

Nếu \(\chi-4\ge0\Leftrightarrow\chi\ge4\)

Khi đó: \(\left|\chi-4\right|=5-3\chi\)

\(\Leftrightarrow\chi-4=5-3\chi\)

\(\Leftrightarrow\chi+3\chi=5+4\)

\(\Leftrightarrow4\chi=9\)

\(\Leftrightarrow\chi=\dfrac{9}{4}\)(KTMĐK)

Trường hợp 2: Nếu \(\chi-4\le0\Leftrightarrow\chi\le4\)

Khi đó: \(\left|\chi-4\right|=5-3\chi\)

\(\Leftrightarrow-\chi+4=5-3\chi\)

\(\Leftrightarrow-\chi+3\chi=5-4\)

\(\Leftrightarrow2\chi=1\)

\(\Leftrightarrow\chi=\dfrac{1}{2}\)(TMĐK)

Vậy phương trình có tập nghiệm S=\(\left\{\dfrac{1}{2}\right\}\)

 

 

 

 

1 tháng 3 2020

1. \(\Leftrightarrow\left(x-6\right)\left(x+7\right)+5\left(x-6\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left[\left(x+7\right)+5\left(3x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-6\right)\left(16x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\16x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-\frac{1}{8}\end{matrix}\right.\)

1 tháng 3 2020

4. \(\Leftrightarrow\left(x+5\right)^2\left(3x+2\right)^2-x^2\left(x+5\right)^2=0\)

\(\Leftrightarrow\left(x+5\right)^2\left[\left(3x+2\right)^2-x^2\right]=0\)

\(\Leftrightarrow\left(x+5\right)^2\left(2x+2\right)\left(4x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x+5\right)^2=0\\2x+2=0\\4x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x=-2\\4x=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-1\\x=-\frac{1}{2}\end{matrix}\right.\)

\(\left(4-3x\right)\left(10x-5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}4-3x=0\\10x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=4\\10x=5\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\x=\frac{1}{2}\end{cases}}}\)

\(\left(7-2x\right)\left(4+8x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}7-2x=0\\4+8x=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=7\\8x=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}}}\)

rồi thực hiện đến hết ... 

Brainchild bé ngây thơ qus e , ko thực hiện đến hết như thế đc đâu :>

\(\left(x-3\right)\left(2x-1\right)=\left(2x-1\right)\left(2x+3\right)\)

\(2x^2-7x+3=4x^2+4x-3\)

\(2x^2-7x+3-4x^2-4x+3=0\)

\(-2x^2-11x+6=0\)

\(2x^2+11x-6=0\)

\(2x^2+12x-x-6=0\)

\(2x\left(x+6\right)-\left(x+6\right)=0\)

\(\left(x+6\right)\left(2x-1\right)=0\)

\(x+6=0\Leftrightarrow x=-6\)

\(2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

\(3x-2x^2=0\)

\(x\left(2x-3\right)=0\)

\(x=0\)

\(2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)

Tự lm tiếp nha 

29 tháng 9 2018

\(2x^3-50x=0\)

<=>  \(2x\left(x^2-25\right)=0\)

<=>   \(2x\left(x-5\right)\left(x+5\right)=0\)

đến đây

bạn tự giải nhé

hk tốt   

19 tháng 6 2019

\(o,x^2-9x+20=0\)

\(\Leftrightarrow x^2-4x-5x+20=0\)

\(\Leftrightarrow x\left(x-4\right)-5\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-5=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)

19 tháng 6 2019

\(n,3x^3-3x^2-6x=0\)

\(\Leftrightarrow3x\left(x^2-x-2\right)=0\)

\(\Leftrightarrow3x\left(x^2+x-2x-2\right)=0\)

\(\Leftrightarrow3x\left[x\left(x+1\right)-2\left(x+1\right)\right]=0\)

\(\Leftrightarrow3x\left(x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}3x=0\\x+1=0\end{cases}}\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}x=0\\x=-1\end{cases}}\\x=2\end{cases}}\)

15 tháng 2 2020

20) -5-(x + 3) = 2 - 5x ⇔ -5 - x - 3 = 2 -5x ⇔ 4x = 10 ⇔ x = \(\frac{5}{2}\)

Vậy...

15 tháng 2 2020
https://i.imgur.com/PCDykdb.jpg