K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3x+2 - 3=24

..............

➙ x =1

vậy x=1 

16 tháng 12 2020

3x+2- 3x= 24

(=)3x*32-3x=24

(=)3x*32-3x*1=24

     3x*(32-1)=24

     3x*(9-1)=24

     3x*8=24

     3x=24/8=3

=)x=1

 

 

=)

11 tháng 10 2021

a) \(\dfrac{2x+3}{24}=\dfrac{3x-1}{32}\)

\(\Rightarrow32\left(2x+3\right)=24\left(3x-1\right)\)

\(\Rightarrow64x+96=72x-24\)

\(\Rightarrow8x=120\Rightarrow x=15\)

b) \(\dfrac{13x-2}{2x+5}=\dfrac{76}{17}\)

\(\Rightarrow17\left(13x-2\right)=76\left(2x+5\right)\)

\(\Rightarrow221x-34=152x+380\)

\(\Rightarrow69x=414\Rightarrow x=6\)

2 tháng 3 2017

​(x-3)(x+2)(x+4)=0 => nghiệm

26 tháng 7 2023

\(|\dfrac{4}{3}x-\dfrac{3}{4}|=\left|-\dfrac{1}{3}\right|.\left|x\right|\Leftrightarrow|\dfrac{4}{3}x-\dfrac{3}{4}|=\dfrac{1}{3}.\left|x\right|\left(1\right)\)

Tìm nghiệm \(\dfrac{4}{3}x-\dfrac{3}{4}=0\Leftrightarrow\dfrac{4}{3}x=\dfrac{3}{4}\Leftrightarrow x=\dfrac{3}{4}.\dfrac{3}{4}\Leftrightarrow x=\dfrac{9}{16}\)

                    \(x=0\)

Lập bảng xét dấu :

     \(x\)                           \(0\)                   \(\dfrac{9}{16}\)

\(\left|\dfrac{4}{3}x-\dfrac{3}{4}\right|\)         \(-\)       \(0\)           \(-\)       \(0\)        \(+\)

      \(\left|x\right|\)              \(-\)       \(0\)           \(+\)       \(0\)        \(+\)

TH1 : \(x< 0\)

\(\left(1\right)\Leftrightarrow-\dfrac{4}{3}x+\dfrac{3}{4}=\dfrac{1}{3}.\left(-x\right)\)

\(\Leftrightarrow-\dfrac{4}{3}x+\dfrac{3}{4}=-\dfrac{1}{3}.x\)

\(\Leftrightarrow\dfrac{4}{3}x-\dfrac{1}{3}x=\dfrac{3}{4}\)

\(\Leftrightarrow x=\dfrac{3}{4}\) (loại vì không thỏa \(x< 0\))

TH2 : \(0\le x\le\dfrac{9}{16}\)

\(\left(1\right)\Leftrightarrow-\dfrac{4}{3}x+\dfrac{3}{4}=\dfrac{1}{3}x\)

\(\Leftrightarrow\dfrac{4}{3}x+\dfrac{1}{3}x=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{5}{3}x=\dfrac{3}{4}\Leftrightarrow x=\dfrac{3}{4}.\dfrac{3}{5}\Leftrightarrow x=\dfrac{9}{20}\) (thỏa điều kiện \(0\le x\le\dfrac{9}{16}\))

TH3 : \(x>\dfrac{9}{16}\)

\(\left(1\right)\Leftrightarrow\dfrac{4}{3}x-\dfrac{3}{4}=\dfrac{1}{3}x\)

\(\Leftrightarrow\dfrac{4}{3}x-\dfrac{1}{3}x=\dfrac{3}{4}\Leftrightarrow x=\dfrac{3}{4}\) (thỏa điều kiện \(x>\dfrac{9}{16}\))

Vậy \(x\in\left\{\dfrac{9}{20};\dfrac{3}{4}\right\}\)

27 tháng 1 2020

Ta có :

\(\left(2x^2-3x+1\right)-\left(2x^2-3x+4\right)=0\)

\(\Leftrightarrow2x^2-3x+1-2x^2+3x-4=0\)

\(\Leftrightarrow-3=0\left(ktm\right)\)

\(\Leftrightarrow x\in\varnothing\)

16 tháng 7 2023

(2\(x\) + 3)2 + (3\(x\) - 2)4  =0

Vì:

(2\(x\) + 3)2 ≥ 0

(3\(x\) - 2)4 ≥ 0

Nên :

(2\(x\) + 3)2 + (3\(x\) - 2)4 = 0

⇔ \(\left\{{}\begin{matrix}2x+3=0\\3x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{2}{3}\end{matrix}\right.\)

Vậy \(x\) \(\in\) \(\varnothing\)

 

21 tháng 8 2023

\(a,2\left|3x-1\right|+1=5\)

\(\Leftrightarrow2\left|3x-1\right|=4\)

\(\Leftrightarrow\left|3x-1\right|=2\Leftrightarrow\left[{}\begin{matrix}3x-1=2\\3x-1=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)

21 tháng 8 2023

2.l3x-1l+1=5
=>2.l3x-1l=4
=>l3x-1l=2
TH1:3x-1=2 =>x=1
TH2:3x-1=-2 =>x=-1/3

 

11 tháng 4 2021

Để Q(x) có nghiệm thì Q(x) = 0

Hay: \(2x^2-3x+1=0\)

\(\Rightarrow2x^2-2x-x+1=0\)

\(\Rightarrow2x\left(x-1\right)-\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(2x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\2x-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy...

11 tháng 4 2021

`2x^2-3x+1=0`

`<=>2x^2-x-2x+1=0`

`<=>x(2x-1)-(2x-1)=0`

`<=>(2x-1)(x-1)=0`

`<=>x=1\or\x=1/2`

18 tháng 11 2019

A.  2.\(|3x+1|\)=\(\frac{3}{4}\)-\(\frac{5}{8}\)

     2.\(|3x+1|\)=1/8

        \(|3x+1|\)=1/8:2

        \(|3x+1|\)=1/16

TH1 : 3x+1=1/16

         3x=1/16-1

         3x=-15/16

         x=-15/16:3

          x=-5/16

18 tháng 11 2019

a,\(\frac{3}{4}-2.\left|3x+1\right|=\frac{5}{8}\)

\(\Rightarrow2.\left|3x+1\right|=\frac{3}{4}-\frac{5}{8}=\frac{6}{8}-\frac{5}{8}=\frac{1}{8}\)

\(\Rightarrow\left|3x+1\right|=\frac{1}{8}.\frac{1}{2}=\frac{1}{16}\)

\(\Rightarrow\orbr{\begin{cases}3x+1=\frac{1}{16}\\3x+1=\frac{-1}{16}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}3x=\frac{1}{16}-1=\frac{-15}{16}\\3x=\frac{-1}{16}-1=\frac{-17}{16}\end{cases}}\)

                                          \(\Rightarrow\orbr{\begin{cases}x=\frac{-15}{16}.\frac{1}{3}=\frac{-5}{16}\\x=\frac{-17}{16}.\frac{1}{3}=\frac{-17}{48}\end{cases}}\)

Vậy....

b,\(\left|3x+2\right|-\left|x-3\right|=\frac{7}{2}\left(1\right)\)

Ta có bảng xét dấu

x                    \(\frac{-2}{3}\)                             3
3x+2                 -             0             +                    |               +
x-3           -              |                 -                    0          +

Nếu x<\(\frac{-2}{3}\)       thì \(\left|3x+2\right|-\left|x-3\right|\) \(=-3x-2-3+x\)

                                                                         \(=-2x-5\)

Từ (1) \(\Rightarrow-2x-5=\frac{7}{2}\)

          \(\Rightarrow-2x=\frac{7}{2}+5=\frac{17}{2}\)

           \(\Rightarrow x=\frac{17}{2}\cdot\frac{-1}{2}=\frac{-17}{4}\)(thỏa mãn x<\(\frac{-2}{3}\)

Nếu \(\frac{-2}{3}\le x\le3\)thì \(\left|3x+2\right|-\left|x-3\right|=3x+2-\left(3-x\right)\)

                                                                                \(=3x+2-3+x\)

                                                                                 \(=2x-1\)

Từ (1)\(\Rightarrow\)\(2x-1=\frac{7}{2}\)

    \(\Rightarrow2x=\frac{9}{2}\)

      \(\Rightarrow x=\frac{9}{4}\)(thỏa mãn......

Còn trưonwfg hợp cuối bạn tự làm nốt nhé