Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(1^2+2^2+3^2+...+10^2=358\)
\(S=2^2+4^2+6^2+...+20^2\)
\(=\left(1.2\right)^2+\left(2.2\right)^2+\left(2.3\right)^2+...+\left(2.10\right)^2\)
\(=1^2.2^2+2^2.2^2+3^2.2^2+...+10^2.2^2\)
\(=2^2\left(1^2+2^2+3^2+...+10^3\right)\)
\(=2^2.385\)
\(=4.385=1540\)
17x + 4 chia hết cho 7
=> 14x + 3x + 4 - 7 chia hết cho 7
=> 14x + 3x - 3 chia hết cho 7
=> 14x + 3(x - 1) chia hết cho 7
Mà 14x chia hết cho 7 => 3(x - 1) chia hết cho 7
Lại có (3;7)=1 => x - 1 chia hết cho 7
=> x = 7.k + 1(k thuộc N)
!)
=> x(x - 1)=0
=> \(\left[\begin{array}{nghiempt}x=1\\x-1=0\end{array}\right.\)
=>\(\left[\begin{array}{nghiempt}x=0\\x=1\end{array}\right.\)
Vậy đa thức có nghiệm là x=0 ; x=1
1) \(x^2-x=0\)
\(\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x-1=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=1\end{array}\right.\)
b) \(x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x-2=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=2\end{array}\right.\)
c)\(x^2-3x=0\)
\(\Leftrightarrow x\left(x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x-3=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=3\end{array}\right.\)
d)\(3x^2-4x=0\)
\(\Leftrightarrow x\left(3x-4\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\3x-4=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=\frac{4}{3}\end{array}\right.\)
Ta có:\(2009^{20}=\left(2009^2\right)^{10}=4036081^{10}< 20092009^{10}\)
Vậy \(2009^{20}< 20092009^{10}\)
Ta có hình vẽ:
x x' O y y' \(\widehat{xOy}+\widehat{yOx'}+\widehat{x'Oy'}=297^o\)
\(\widehat{xOy}\) và \(\widehat{x'Oy'}\) đối đỉnh \(\Rightarrow\widehat{xOy}=\widehat{x'Oy'}\)
\(\widehat{x'Oy}\) và \(\widehat{x'Oy'}\) kề bù nên:
\(\widehat{x'Oy'}+\widehat{x'Oy}=180^o\)
\(\Rightarrow\widehat{xOy}+180^0=297^o\)
\(\Rightarrow\widehat{xOy}=117^o\)
\(\widehat{xOy}=\widehat{x'Oy'}=117^o\)
\(\Rightarrow\widehat{x'Oy}=297^o-117^o-177^o=3^o\)
\(\widehat{x'Oy}\) đối đỉnh với \(\widehat{xOy'}\) nên
\(\widehat{x'Oy}=\widehat{xOy'}=3^o\)
Vậy...
\(3x^2y^4\)-\(5xy^3\)-\(\dfrac{3}{2}x^2y^4\)+\(3xy^3\)+\(2xy^3\)+1=1,5\(x^2y^4\)+1>0
a) \(\left(x-3\right)\left(x-2\right)< 0\)
Ta có : \(x-2>x-3\)
\(\Rightarrow\left\{{}\begin{matrix}x-3< 0\\x-2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< 3\\x>2\end{matrix}\right.\Rightarrow2< x< 3\)
Vậy \(2< x< 3\)
b) \(3x+x^2=0\)
\(x\left(3+x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\3+x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
Vậy \(x\in\left\{-3;0\right\}\)
3x+2 - 3x =24
..............
➙ x =1
vậy x=1
3x+2- 3x= 24
(=)3x*32-3x=24
(=)3x*32-3x*1=24
3x*(32-1)=24
3x*(9-1)=24
3x*8=24
3x=24/8=3
=)x=1
=)