Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ...
(3x-2)^5=(-3)^5
=) 3x-2=(-3)
3x=(-1)
x=(-1/3)
DUYỆT CHO MÌH ĐI RỒI MÌH LẠI GIẢI TIẾP CHO
\(\left(3x-2\right)^5=-243\)
=> \(\left(3x-2\right)^5=\left(-3\right)^5\)
=> 3x - 2 = -3
=> 3x = -3 + 2
=> 3x = -1
=> x = -1/3
\(\frac{1}{9}.27^x=3^x\)
=> \(3^{-2}.\left(3^3\right)^x=3^x\)
=> 3-2.33x=3x
=> 33x-2=3x
=> 3x - 2 = x
=> 3x - x = 2
=> 2x = 2
=> x = 1
\(\frac{1}{3^2}.3^4.3^n=3^7\)
=> \(3^{-2}.3^4.3^n=3^7\)
=> 3n+4-2=37
=> n + 4 - 2 = 7
=> n = 7 + 2 - 4
=> n = 5
\(5^{x+4}-3.5^{x+3}=2.5^{11}\)
\(5^{x+3}\left(5-3\right)=2.5^{11}\)
\(5^{x+3}.2=2.5^{11}\)
\(5^{x+3}=5^{11}\)
\(x+3=11\)
\(x=8\)
\(4^{x+3}-3.4^{x+1}=13.4^{11}\)
\(4^{x+1}\left(4^2-3\right)=13.4^{11}\)
\(4^{x+1}.13=13.4^{11}\)
\(4^{x+1}=4^{11}\)
\(x+1=11\)
\(x=10\)
a, \(\left(\frac{1}{2}-\frac{1}{3}\right)\cdot6^x+6^{x+2}=6^{10}+6^7\)
\(\Leftrightarrow\frac{1}{6}\cdot6^x+6^x\cdot6^2=6^{10}+6^7\)
\(\Leftrightarrow6^{x-1}\left(1+6^3\right)=6^7\left(6^3+1\right)\)
\(\Leftrightarrow6^{x-1}=6^7\Leftrightarrow x-1=7\)
\(\Leftrightarrow x=8\)
b, \(\left(\frac{1}{2}-\frac{1}{6}\right)\cdot3^{x+4}-4\cdot3^x=3^{16}-4\cdot3^{13}\)
\(\Leftrightarrow\frac{1}{3}\cdot3^{x+4}-4\cdot3^x=3^{13}\left(3^3-4\right)\)
\(\Leftrightarrow3^x\cdot3^3-4\cdot3^x=3^{13}\left(3^3-4\right)\)
\(\Leftrightarrow3^x\left(3^3-4\right)=3^{13}\left(3^3-4\right)\)
\(\Leftrightarrow3^x=3^{13}\Leftrightarrow x=13\)
a. x=8
b. x=13
còn cách tính thì mình quên rồi vì minh học cái này lâu lắm rồi ko nhớ đc.
a,(=)\(3^{x+1}.\left(3+4\right)=7.3^6\)
(=)\(3^{x+1}=3^6\)
=>x+1=6(=)x=5
b
a)\(\left(-3\right)^{x+3}=-\frac{1}{27}\)
\(\left(-3\right)^{x+3}=\left(-\frac{1}{3}\right)^3\)
\(\left(-3\right)^{x+3}=\left(-\frac{3^0}{3^1}\right)^3\)
\(\left(-3\right)^{x+3}=\left(-3^{-1}\right)^3\)
\(\left(-3\right)^{x+3}=\left(-3\right)^{-3}\)
\(\Rightarrow x+3=-3\)
\(\Rightarrow x=-6\)
b)\(\left(-6\right)^{2x+2}=\frac{1}{36}\)
\(\left(-6\right)^{2x+2}=\left(-\frac{1}{6}\right)^2\)
\(\left(-6\right)^{2x+2}=\left(-\frac{6^0}{6^1}\right)^2\)
\(\left(-6\right)^{2x+2}=\left(-6^{-1}\right)^2\)
\(\left(-6\right)^{2x+2}=\left(-6\right)^{-2}\)
\(\Rightarrow2x+2=-2\)
\(\Rightarrow2x=-4\)
\(\Rightarrow x=-2\)
c)\(\left(-3\right)^{x+5}=\frac{1}{81}\)
\(\left(-3\right)^{x+5}=\left(-\frac{1}{3}\right)^4\)
\(\left(-3\right)^{x+5}=\left(-\frac{3^0}{3^1}\right)^4\)
\(\left(-3\right)^{x+5}=\left(-3^{-1}\right)^4\)
\(\left(-3\right)^{x+5}=\left(-3\right)^{-4}\)
\(\Rightarrow x+5=-4\)
\(\Rightarrow x=-9\)
d)\(\left(\frac{1}{9}\right)^x=\left(\frac{1}{27}\right)^6\)
\(\left[\left(\frac{1}{3}\right)^2\right]^x=\left[\left(\frac{1}{3}\right)^3\right]^6\)
\(\left(\frac{1}{3}\right)^{2x}=\left(\frac{1}{3}\right)^{18}\)
\(\Rightarrow2x=18\)
\(\Rightarrow x=9\)
e)\(\left(\frac{4}{9}\right)^x=\left(\frac{8}{27}\right)^6\)
\(\left[\left(\frac{2}{3}\right)^2\right]^x=\left[\left(\frac{2}{3}\right)^3\right]^6\)
\(\left(\frac{2}{3}\right)^{2x}=\left(\frac{2}{3}\right)^{18}\)
\(\Rightarrow2x=18\)
\(\Rightarrow x=9\)
a, => 2^x = (2^3)^4/(2^4)^3 = 2^12/2^12 = 1 = 2^0
=> x = 0
c, => 4^x = 4^10.(4-3) = 4^10
=> x=10
d, => 2^2.3^x-1 + 2.3^x.9 = 2^2.3^6+2.3^9
=> 2.3^x-1 . (2+3.9) = 2.3^6.(2+3^3)
=> 2.3^x-1 . 27 = 2.3^6 . 27
=> 3^x-1 = 3^6
=> x-1 = 6
=> x = 7
e, => 2^x.(1/3+1/6+2) = 2^11.(2+1/2)
=> 2^x. 5/2 = 2^11. 5/2
=> 2^x = 2^11
=> x = 11
Tk mk nha
a, Ta có \(2.3^{x+2}+4.3^{x+1}=3^6.10\)
\(\Rightarrow2.3.3^{x+1}+4.3^{x+1}=3^6.10\)
\(\Rightarrow3^{x+1}.\left(6+4\right)=3^6.10\)
\(\Rightarrow3^{x+1}.10=3^6.10\)
\(\Rightarrow3^{x+1}=3^6\)
\(\Rightarrow x+1=6\)
\(\Rightarrow x=5\)
b,\(\left(\frac{1}{3}+\frac{1}{6}\right).2^{x+4}-2^x=2^{13}-2^{16}\)
\(\Rightarrow\frac{1}{2}.2^{x+4}-2^x=2^{13}.\left(1-2^3\right)\)
\(\Rightarrow2^{x+3}-2^x=2^{13}.\left(1-2^3\right)\)
\(\Rightarrow2^x.\left(2^3-1\right)=2^{13}.\left(1-2^3\right)\)
\(\Rightarrow2^x.\left(2^3-1\right)=-2^{13}.\left(2^3-1\right)\)
\(\Rightarrow2^x=2^{-13}\)
\(\Rightarrow x=-13\)
A ) 2 . 3x+2 + 4 . 33+1 = 36 . 10
2 . 3x . 9 + 4 . 3x . 3 = 729 .10
18 . 3x + 12 . 3x = 243 . 3 . 10
30 . 3x = 243 . 30
3x = 243
x = 5
Lời giải:
$3^{x-1}+4.3^{x-2}=\frac{7}{243}$
$\Leftrightarrow 3. 3^{x-2}+4.3^{x-2}=\frac{7}{243}$
$\Leftrightarrow 3^{x-2}(3+4)=\frac{7}{243}$
$\Rightarrow 3^{x-2}=\frac{1}{243}=3^{-5}$
$\Rightarrow x-2=-5$
$\Rightarrow x=-3$
\(3^{x-1}+4.3^{x-2}=\frac{7}{243}\)
\(\Rightarrow3^1.3^{x-2}+4.3^{x-2}=\frac{7}{243}\)
\(\Rightarrow3^{x-2}.\left(3^1+4\right)=\frac{7}{243}\)
\(\Rightarrow3^{x-2}.7=\frac{7}{243}\)
\(\Rightarrow3^{x-2}=\frac{7}{243}:7\)
\(\Rightarrow3^{x-2}=\frac{1}{243}\)
\(\Rightarrow3^{x-2}=3^{-5}\)
\(\Rightarrow x-2=-5\)
\(\Rightarrow x=\left(-5\right)+2\)
\(\Rightarrow x=-3\)
Vậy \(x=-3.\)
Chúc bạn học tốt!