Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x\left(x+3\right)-3\left(x^2+1\right)=x+1-x\left(x-2\right)\)
\(\Leftrightarrow2x^2+6x-3x^2-3=x+1-x^2+2x\)
\(\Leftrightarrow-x^2+6x-3=-x^2+3x+1\)
\(\Leftrightarrow3x=4\)
hay \(x=\dfrac{4}{3}\)
\(2x\left(x+3\right)-3\left(x^2+1\right)=x+1-x\left(x-2\right)\)
\(\Leftrightarrow2x^2+6x-3x^2-3=x+1-x^2+2x\)
\(\Leftrightarrow3x=4\Leftrightarrow x=\dfrac{4}{3}\)
\(2x\left(x-3\right)=x^2-3x\)
\(\Rightarrow2x\left(x-3\right)=x\left(x-3\right)\)
\(\Rightarrow2x=x\)
\(\Rightarrow x=0\)
Hình hiển thị bị lỗi rồi. Bạn nên gõ hẳn đề ra để được hỗ trợ tốt hơn nhé.
d) \(\left|2x-3\right|=x-3\)
TH1: \(\left|2x-3\right|=2x-3\) với \(2x-3\ge0\Leftrightarrow x\ge\dfrac{3}{2}\)
Pt trở thành:
\(2x-3=x-3\) (ĐK: \(x\ge\dfrac{3}{2}\) )
\(\Leftrightarrow2x-x=-3+3\)
\(\Leftrightarrow x=0\left(ktm\right)\)
TH2: \(\left|2x-3\right|=-\left(2x-3\right)\) với \(2x-3< 0\Leftrightarrow x< \dfrac{3}{2}\)
Pt trở thành:
\(-\left(2x-3\right)=x-3\)
\(\Leftrightarrow-2x+3=x-3\)
\(\Leftrightarrow-2x-x=-3-3\)
\(\Leftrightarrow-3x=-6\)
\(\Leftrightarrow x=-\dfrac{6}{-3}=2\left(ktm\right)\)
Vậy Pt vô nghiệm
\(A=\dfrac{x^3-2x^2-15x}{x-5}=\dfrac{x\left(x^2-2x-15\right)}{x-5}=\dfrac{x\left(x+3\right)\left(x-5\right)}{x-5}=x\left(x+3\right)\)
\(A=x^2+3x=\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{9}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\)
\(A_{min}=-\dfrac{9}{4}\)
\(\left(2x+3\right)\left(x-1\right)+\left(2x-3\right)\left(1-x\right)=0\)
\(\left(2x+3\right)\left(x-1\right)-\left(2x-3\right)\left(x-1\right)=0\)
\(\left(x-1\right)\left(2x+3-2x+3\right)=0\)
\(\left(x-1\right)\cdot6=0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
(2x+3).(x-1) + (2x-3).(1-x) = 0
(2x+3).(x-1) - (2x+3).(1-x) = 0
(2x+3).[(x-1) - (1-x)] = 0
(2x+3).( x - 1 -1 + x) = 0
(2x+1). ( 2x - 2) = 0
(2x+1).2.(x-1) = 0
=> 2x+1 = 0 => 2x = -1 => x = -1/2
x-1=0 => x = 1
\(\left(3-2x\right)^2=\left(x-2\right)\left(2x-3\right)\)
\(\Leftrightarrow\left(3x-2\right)^2-\left(x-2\right)\left(2x-3\right)=0\)
\(\Leftrightarrow9x^2-12x+4-\left(2x^2-7x+6\right)=0\)
\(\Leftrightarrow9x^2-12x+4-2x^2+7x-6=0\)
\(\Leftrightarrow7x^2-5x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{2}{7}\end{matrix}\right.\)
Vậy \(S=\left\{1;-\dfrac{2}{7}\right\}\)
`(3-2x)^2=(x-2)(2x-3)`
`<=>(2x-3)^2 -(x-2)(2x-3)=0`
`<=> (2x-3)(2x-3-x+2)=0`
`<=> (2x-3)(x-1)=0`
\(< =>\left[{}\begin{matrix}2x-3=0\\x-1=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=1\end{matrix}\right.\)
a: (x-3)(x-1)-x(x-2)=0
=>\(x^2-4x+3-x^2+2x=0\)
=>\(-2x+3=0\)
=>-2x=-3
=>\(x=\dfrac{3}{2}\)
b: \(\left(x+2y\right)^2-\left(2x-y\right)^2\)
\(=\left(x+2y+2x-y\right)\left(x+2y-2x+y\right)\)
\(=\left(3x+y\right)\left(-x+3y\right)\)
\(\Rightarrow2x^2+6x-2x^2=30\Rightarrow6x=30\Rightarrow x=5\)