Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(2x-1\right)\left(x^2-x+1\right)=2x^3-3x^2+2\)
\(\Leftrightarrow2x^3-2x^2+2x-x^2+x-1-2x^3+3x^2-2=0\)
\(\Leftrightarrow3x=3\)
hay x=1
Vậy: S={1}
b) Ta có: \(\left(x+1\right)\left(x^2+2x+4\right)-x^3-3x^2+16=0\)
\(\Leftrightarrow x^3+2x^2+4x+x^2+2x+4-x^3-3x^2+16=0\)
\(\Leftrightarrow6x=-20\)
hay \(x=-\dfrac{10}{3}\)
c) Ta có: \(\left(x+1\right)\cdot\left(x+2\right)\left(x+5\right)-x^3-8x^2=27\)
\(\Leftrightarrow\left(x^2+3x+2\right)\left(x+5\right)-x^3-8x^2-27=0\)
\(\Leftrightarrow x^3+5x^2+3x^2+15x+2x+10-x^3-8x^2-27=0\)
\(\Leftrightarrow17x=17\)
hay x=1
2: \(3x\left(x-4\right)+2x-8=0\)
=>\(3x\left(x-4\right)+2\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(3x+2\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{2}{3}\end{matrix}\right.\)
3: 4x(x-3)+x2-9=0
=>\(4x\left(x-3\right)+\left(x+3\right)\left(x-3\right)=0\)
=>\(\left(x-3\right)\left(4x+x+3\right)=0\)
=>\(\left(x-3\right)\left(5x+3\right)=0\)
=>\(\left[{}\begin{matrix}x-3=0\\5x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{5}\end{matrix}\right.\)
4: \(x\left(x-1\right)-x^2+3x=0\)
=>\(x^2-x-x^2+3x=0\)
=>2x=0
=>x=0
5: \(x\left(2x-1\right)-2x^2+5x=16\)
=>\(2x^2-x-2x^2+5x=16\)
=>4x=16
=>x=4
a: =>2x^2-2x+2x-2-2x^2-x-4x-2=0
=>-5x-4=0
=>x=-4/5
b: =>6x^2-9x+2x-3-6x^2-12x=16
=>-19x=19
=>x=-1
c: =>48x^2-12x-20x+5+3x-48x^2-7+112x=81
=>83x=83
=>x=1
1: =>x^2+4x-21=0
=>(x+7)(x-3)=0
=>x=3 hoặc x=-7
2: =>(2x-5-4)(2x-5+4)=0
=>(2x-9)(2x-1)=0
=>x=9/2 hoặc x=1/2
3: =>x^3-9x^2+27x-27-x^3+27+9(x^2+2x+1)=15
=>-9x^2+27x+9x^2+18x+9=15
=>18x=15-9-27=-21
=>x=-7/6
6: =>4x^2+4x+1-4x^2-16x-16=9
=>-12x-15=9
=>-12x=24
=>x=-2
7: =>x^2+6x+9-x^2-4x+32=1
=>2x+41=1
=>2x=-40
=>x=-20
Bài 3:
\(\Leftrightarrow x^3+64-x^3+25x=264\)
hay x=8
\(1,C=6x^2+23x-55-6x^2-23x-21=-76\\ 2,=\left(2x^4-x^2+2x^3-x-6x^2+6-3\right):\left(2x^2-1\right)\\ =\left[\left(2x^2-1\right)\left(x^2+x-6\right)-3\right]:\left(2x^2-1\right)\\ =x^2+x-6\left(dư.-3\right)\\ 3,\Leftrightarrow x^3+64-x^3+25x=264\\ \Leftrightarrow25x=200\Leftrightarrow x=8\)
a) 4( 18 - 5x ) - 12( 3x - 16 ) = 15( 2x - 16 ) - 6( x + 14 )
<=> 72 - 20x - 36x + 192 = 30x - 240 - 6x - 84
<=> -20x - 36x - 30x + 6x = -240 - 84 - 72 - 192
<=> -80x = -588
<=> x = -588/-80 = 147/20
b) ( x + 3 )( x + 2 ) - ( x - 2 )( x + 5 ) = 6
<=> x2 + 5x + 6 - ( x2 + 3x - 10 ) = 6
<=> x2 + 5x + 6 - x2 - 3x + 10 = 6
<=> 2x + 16 = 6
<=> 2x = -10
<=> x = -5
c) -x( x + 3 ) + 2 = ( 4x + 1 )( x - 1 ) + 2x
<=> -x2 - 3x + 2 = 4x2 - 3x - 1 + 2x
<=> -x2 - 3x - 4x2 + 3x - 2x = -1 - 2
<=> -5x2 - 2x = -3
<=> -5x2 - 2x + 3 = 0
<=> -( 5x2 + 2x - 3 ) = 0
<=> -( 5x2 + 5x - 3x - 3 ) = 0
<=> -[ 5x( x + 1 ) - 3( x + 1 ) ] = 0
<=> -( x + 1 )( 5x - 3 ) = 0
<=> \(\orbr{\begin{cases}x+1=0\\5x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{3}{5}\end{cases}}\)
d) ( 2x + 3 )( x - 3 ) - ( x - 3 )( x + 1 ) = ( 2 - x )( 3x + 1 ) + 3
<=> 2x2 - 3x - 9 - ( x2 - 2x - 3 ) = -3x2 + 5x + 2 + 3
<=> 2x2 - 3x - 9 - x2 + 2x + 3 = -3x2 + 5x + 2 + 3
<=> 2x2 - 3x - x2 + 2x + 3x2 - 5x = 2 + 3 + 9 - 3
<=> 4x2 - 6x = 11
<=> 4x2 - 6x - 11 = 0
=> Vô nghiệm ( Lớp 8 chưa học nghiệm vô tỉ nên để vậy ) :))
vẫn làm được nha quỳnh !
\(4x^2-6x-11=0\)
\(< =>\left(4x^2-6x+\frac{9}{4}\right)-13\frac{1}{4}=0\)
\(< =>\left(2x-\frac{3}{2}\right)^2=\frac{53}{4}\)
\(< =>\orbr{\begin{cases}2x-\frac{3}{2}=\frac{\sqrt{53}}{2}\\2x-\frac{3}{2}=-\frac{\sqrt{53}}{2}\end{cases}}\)
\(< =>\orbr{\begin{cases}2x=\frac{3+\sqrt{53}}{2}\\2x=\frac{3-\sqrt{53}}{2}\end{cases}}\)
\(< =>\orbr{\begin{cases}x=\frac{3+\sqrt{53}}{4}\\x=\frac{3-\sqrt{53}}{4}\end{cases}}\)
(2x-5)(3x+1)-3(2x-1)2=x-16
\(\Leftrightarrow\)6x2-13x-5-12x2+12x-3=x-16
\(\Leftrightarrow\)-6x2-2x+8=0
\(\Leftrightarrow\)(-6x-8)(x-1)=0
\(\Leftrightarrow\)-6x-8=0 hoặc x-1=0
\(\Leftrightarrow\)x\(\in\){\(\dfrac{-4}{3}\);1}