![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: x = 2011 \(\Rightarrow\) 2010 = x - 1
\(A=x^{2011}-2010x^{2010}-2010x^{2009}-...-2010x+1\)
\(=x^{2011}-\left(x-1\right)x^{2010}-\left(x-1\right)x^{2009}-...-\left(x-1\right)x+1\)
\(=x^{2011}-\left(x-1\right)x^{2010}-\left(x-1\right)x^{2009}-...-\left(x-1\right)x+1\)
\(=x^{2011}-x^{2011}+x^{2010}-x^{2010}+x^{2009}-...-x^2+x+1\)
\(=x+1\)
\(=2011+1\)
\(=2012.\)
x=2011
=> 2010= x-1
A = x^2011- (x-1) x^2010- (x-1).x^2009-.....- (x-1).x+1
= x^2011-x^2011+x^2010- x^2010+x^2009..x^2.-x^2+x+1
= x+1
=(x-1)+2= 2010+2=2012
![](https://rs.olm.vn/images/avt/0.png?1311)
-Ta thấy \(x^4+x^2+1=x^4-x+x^2+x+1=\left(x^2-x\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)=\left(x^2-x+1\right)\left(x^2+x+1\right)\)
Vậy PT sẽ thành
\(\frac{2010x\left(x^3+1\right)}{x\left(x^4+x^2+1\right)}+\frac{2010x\left(x^3-1\right)}{x\left(x^4+x^2+1\right)}=\frac{2011}{x\left(x^4+x^2+1\right)}\)
\(\Leftrightarrow2.2010x^4=2011\Leftrightarrow x=...\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
Ta có : \(2010=2011-1=x-1\)
Thay \(2010=x-1\) vào biểu thức A ,có :
\(x^{2011}-\left(x-1\right)x^{2010}-\left(x-1\right)x^{2009}-...-\left(x-1\right)x+1\)
\(=x^{2011}-x^{2011}+x^{2010}-x^{2010}+x^{2009}-...-x^2+x+1\)
\(=x+1\)
\(=2011+1=2012\)
Vậy giá trị biểu thức A là 2012
Bài 3:
\(a+b+c=0\)
\(\Rightarrow a+b=-c\)
\(\Rightarrow\left(a+b\right)^2=\left(-c\right)^2\)
\(\Rightarrow a^2+2ab+b^2=c^2\)
\(\Rightarrow a^2+b^2-c^2=-2ab\left(1\right)\)
Tương tự :
\(a+b+c=0\)
\(\Rightarrow a+c=-b\)
\(\Rightarrow\left(a+c\right)^2=\left(-b\right)^2\)
\(\Rightarrow a^2+2ac+c^2=b^2\)
\(\Rightarrow a^2+c^2-b^2=-2ac\left(2\right)\)
\(a+b+c=0\)
\(\Rightarrow b+c=-a\)
\(\Rightarrow\left(b+c\right)^2=\left(-a\right)^2\)
\(\Rightarrow b^2+c^2-a^2=-2bc\left(3\right)\)
Từ (1)(2)(3)
\(\Rightarrow A=\dfrac{-ab}{2ab}+\dfrac{-bc}{2bc}+\dfrac{-ac}{2ac}\)
\(=\dfrac{-abc-abc-abc}{2abc}=\dfrac{-3abc}{2abc}=-\dfrac{3}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a ) \(3x^3-7x^2+17x-5\)
\(=\left(3x^2-x^2\right)-\left(6x^2-2x\right)+\left(15x-5\right)\)
\(=x^2\left(3x-1\right)-2x\left(3x-1\right)+5\left(3x-1\right)\)
\(=\left(x^2-2x+5\right)\left(3x-1\right)\)
b \(x^4+2011x^2+2010x+2011\)
\(=x^4-x+2011x^2+2011x+2011\)
\(=x\left(x^3-1\right)+2011\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2011\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2011\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left[\left(x+y\right)^3+z^3\right]-\left[3xy\left(x+y\right)+3xyz\right]\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-xz-yz+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)
b) \(x^4+2011x^2+2010x+2011\)
\(=x^4+2010x^2+x^2+2010x+2010+1\)
\(=\left(x^4+x^2+1\right)+\left(2010x^2+2010x+2010\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+1\right)+2010\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2011\right)\)
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có x4+2010x2+2009x+2010=0
suy ra x4-x+2010x+2010x2+2010=0
x(x3-1)+2010(x2+x+1)=0
x(x-1)(x2+x+1)+2010(x2+x+1)=0
(x2+x+1)(x2-x+2010)=0
hoặc x2+x+1=0
x2-x+2020=0
mà x2+x+1>0, x2-x+2020>0
Vậy không tồn tại x thỏa mãn đề bài
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Leftrightarrow x^4-x+2010\left(x^2+x+1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x^2+x+1\right)+2010\left(x^2_{ }+x+1\right)=0\)
\(\Leftrightarrow\left(x^2-x+2010\right)\left(x^2+x+1\right)=0\left(1\right)\)
Ta có \(\left\{{}\begin{matrix}x^2-x+2010=\left(x-\frac{1}{2}\right)^2+\frac{8039}{4}>0\\x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\end{matrix}\right.\)
Nên PT vô gnhiệm
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(\Leftrightarrow\left(\left|x\right|\right)^2-5\left|x\right|-6=0\)
\(\Leftrightarrow\left(\left|x\right|-6\right)\left(\left|x\right|+1\right)=0\)
\(\Leftrightarrow\left|x\right|-6=0\)
=>x=6 hoặc x=-6
b: \(\dfrac{x}{x-2}+\dfrac{5}{\left|x+2\right|}=1\)
Trường hợp 1: x>-2 và x<>2
Pt sẽ là \(\dfrac{x}{x-2}+\dfrac{5}{x+2}=1\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=x\left(x+2\right)+5\left(x-2\right)\)
\(\Leftrightarrow x^2+2x+5x-10=x^2-4\)
=>7x=6
hay x=6/7(nhận)
TRường hợp 2: x<-2
Pt sẽ là \(\dfrac{x}{x-2}-\dfrac{5}{x+2}=1\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=x\left(x+2\right)-5\left(x-2\right)\)
\(\Leftrightarrow x^2+2x-5x+10=x^2-4\)
=>-3x=-14
hay x=14/3(loại)
2010x2 - x -2011 = 0
=> 2011x2 - 2011 - x2-x = 0
=> 2011(x2-1) - x(x+1) =0
=> 2011(x-1)(x+1) - x(x+1) = 0
=> (x+1)[2011(x-1)-x]=0
=> (x+1)(2011x-x-2011)=0
=> (x+1)(2010x-2011)=0
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\2010x-2011=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\2010x=2011\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{2011}{2010}\end{matrix}\right.\)