Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{16}{5}.\frac{15}{16}-\left(\frac{3}{4}+\frac{2}{7}\right):\left(\frac{-29}{28}\right)\)
\(=3-\left(\frac{21}{28}+\frac{8}{28}\right):\left(\frac{-29}{28}\right)\)
\(=3-\left(\frac{29}{28}\right).\left(\frac{-28}{29}\right)\)
\(=3-\left(-1\right)\)
\(=4\)
b) \(=\left(\frac{1}{4}+\frac{25}{2}-\frac{5}{16}\right):\left(12-\frac{7}{12}:\left(\frac{3}{8}-\frac{1}{12}\right)\right)\)
\(=\left(\frac{4}{16}+\frac{200}{16}-\frac{5}{16}\right):\left(12-\frac{7}{12}:\left(\frac{3.3}{2.3.4}-\frac{2}{2.3.4}\right)\right)\)
\(=\left(\frac{199}{16}\right):\left(12-\frac{7}{12}:\left(\frac{9}{24}-\frac{2}{24}\right)\right)\)
\(=\frac{199}{16}:\left(12-\frac{7}{12}.\frac{24}{7}\right)\)
\(=\frac{199}{16}:\left(12-2\right)\)
\(=\frac{199}{16}:10\)
\(=\frac{199}{160}\)
c) \(\left(\frac{-3}{5}+\frac{5}{11}\right):\frac{-3}{7}+\left(\frac{-2}{5}+\frac{6}{5}\right):\frac{-3}{7}\)
\(\left(\frac{-33}{55}+\frac{25}{55}\right):\frac{-3}{7}+\left(\frac{4}{5}\right):\frac{-3}{7}\)
\(\left(\frac{-8}{55}\right).\frac{-7}{3}+\frac{4}{5}.\frac{-7}{3}\)
\(\frac{-7}{3}\left(\frac{-8}{55}+\frac{4}{5}\right)\)
\(\frac{-7}{3}.\frac{36}{55}=\frac{-84}{55}\)
1) \(\frac{1}{3}x-\frac{2}{5}=\frac{1}{3}\)
⇒ \(\frac{1}{3}x=\frac{1}{3}+\frac{2}{5}\)
⇒ \(\frac{1}{3}x=\frac{11}{15}\)
⇒ \(x=\frac{11}{15}:\frac{1}{3}\)
⇒ \(x=\frac{11}{5}\)
Vậy \(x=\frac{11}{5}.\)
2) \(2,5:7,5=x:\frac{3}{5}\)
⇒ \(\frac{5}{2}:\frac{15}{2}=x:\frac{3}{5}\)
⇒ \(\frac{1}{3}=x:\frac{3}{5}\)
⇒ \(x=\frac{1}{3}.\frac{3}{5}\)
⇒ \(x=\frac{1}{5}\)
Vậy \(x=\frac{1}{5}.\)
4) \(\left|x\right|+\left|x+2\right|=0\)
Có: \(\left\{{}\begin{matrix}\left|x\right|\ge0\\\left|x+2\right|\ge0\end{matrix}\right.\forall x.\)
⇒ \(\left|x\right|+\left|x+2\right|=0\)
⇒ \(\left\{{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=0\\x=0-2\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vô lí vì \(x\) không thể nhận cùng lúc 2 giá trị khác nhau.
⇒ \(x\in\varnothing\)
Vậy không tồn tại giá trị nào của \(x\) thỏa mãn yêu cầu đề bài.
10) \(5-\left|1-2x\right|=3\)
⇒ \(\left|1-2x\right|=5-3\)
⇒ \(\left|1-2x\right|=2\)
⇒ \(\left[{}\begin{matrix}1-2x=2\\1-2x=-2\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}2x=1-2=-1\\2x=1+2=3\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=\left(-1\right):2\\x=3:2\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=-\frac{1}{2}\\x=\frac{3}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{-\frac{1}{2};\frac{3}{2}\right\}.\)
Chúc bạn học tốt!
9, \(13\frac{1}{3}:1\frac{1}{3}=26:\left(2x-1\right)\)
\(\frac{40}{3}:\frac{4}{3}=26:\left(2x-1\right)\)
\(10=26:\left(2x-1\right)\)
\(2x-1=26:10\)
\(2x-1=2,6\)
\(2x=2,6+1\)
\(2x=3,6\)
\(x=3,6:2\)
\(x=1,8\)
\(A=\frac{99}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+..+\frac{1}{99.100}\right)\)
\(A=\frac{99}{100}-\left(1-\frac{1}{100}\right)\)
\(A=\frac{99}{100}-\frac{99}{100}\)
\(A=\frac{99-99}{100}=0\)
Bài 2
\(\left(3x+5\right).\left(2x-4\right)=0\)
\(TH1:3x+5=0\)
\(3x=-5\)
\(x=-\frac{5}{3}\)
\(TH2:2x-4=0\)
\(2x=4\)
\(x=2\)
\(\left(x^2-1\right).\left(x+3\right)=0\)
\(\Rightarrow x^2-1=0\)
\(x^2=1\)
\(\Rightarrow x=1\)
\(x+3=0\)
\(x=-3\)
\(5x^2-\frac{1}{2}x=0\)
\(\Rightarrow5x^2-\frac{x}{2}=0\)
\(\Rightarrow5x^2=\frac{5x^2}{1}=\frac{5x^2.2}{2}\)
\(10x^2-x=x.\left(10x-1\right)\)
\(\frac{x.\left(10x-1\right)}{2}=0\)
\(\frac{x.\left(10x-1\right)}{2}.2=0.2\)
\(10x-1=0\)
\(x=\frac{1}{10}=0.100\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{10}=0.100\\x=0\end{cases}}\)
\(\frac{x}{4}-\frac{1}{2}=\frac{3}{4}\)
\(\frac{x}{4}=\frac{3}{4}+\frac{1}{2}\)
\(\frac{x}{4}=\frac{5}{4}\)
\(\Rightarrow x=5\)
\(\frac{1}{8}+\frac{7}{8}:x=\frac{3}{4}\)
\(\frac{7}{8}:x=\frac{3}{4}-\frac{1}{8}\)
\(x=\frac{7}{8}:\frac{5}{8}\)
\(x=\frac{56}{40}=\frac{28}{20}=\frac{14}{10}=\frac{7}{5}\)
a, \(\frac{3}{5}\left(2x-\frac{1}{3}\right)+\frac{4}{15}=\frac{12}{30}\)
\(\Leftrightarrow\frac{3}{5}\left(2x-\frac{1}{3}\right)=\frac{2}{15}\)
\(\Leftrightarrow2x-\frac{1}{3}=\frac{2}{9}\)
\(\Leftrightarrow2x=\frac{5}{9}\)
\(\Leftrightarrow x=\frac{5}{18}\)
b,\(\left(-0,2\right)^x=\frac{1}{25}\)
\(\Leftrightarrow\left(\frac{-1}{5}\right)^x=\left(\frac{-1}{5}\right)^2\)
\(\Leftrightarrow x=2\)
c,\(\left|x-1\right|-\frac{3}{12}=\left(-\frac{1}{2}\right)^2\)
\(\Leftrightarrow\left|x-1\right|-\frac{3}{12}=\frac{1}{4}\)
\(\Leftrightarrow\left|x-1\right|=\frac{1}{2}\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=\frac{1}{2}\\x-1=-\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{1}{2}\end{cases}}\)
\(a,\frac{3}{5}\left(2x-\frac{1}{3}\right)=\frac{12}{30}-\frac{4}{15}\)
\(\frac{3}{5}\left(2x-\frac{1}{3}\right)=\frac{2}{15}\)
\(2x-\frac{1}{3}=\frac{2}{9}\)
\(x=\frac{5}{18}\)
\(b,\left(-0,2\right)^x=\frac{1}{25}\)
\(\left(-0,2\right)^x=\left(-\frac{1}{5}\right)^2\)
\(\left(-0,2\right)^x=\left(-0,2\right)^2\)
\(x=2\)
c,/x-1/=1/2
Nếu
\(x-1\ge0\)
\(x\ge1\)
suy ra x-1=1/2
x=3/2(thỏa mãn điều kiện )
nếu \(x-1\le0\)
\(x\le1\)
suy ra x-1=-1/2
x=1/2 (thỏa mãn điều kiện )
Vậy ...
nha !!!
mk ko chép lại đề nhé bn
b,
=>\(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|-\frac{14}{5}\right|\)
=>\(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\frac{14}{5}\) \(\Rightarrow\left|x-\frac{1}{3}\right|=2\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{3}=-2\\x-\frac{1}{3}=2\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{5}{3}\\x=\frac{7}{3}\end{cases}}}\)
c,\(\Rightarrow\frac{x-1}{2013}+\frac{x-2}{2012}-\frac{x-3}{2011}-\frac{x-4}{2010}=0\)
=> \(\frac{x-1}{2013}-1+\frac{x-2}{2012}-1-\left(\frac{x-3}{2011}-1+\frac{x-4}{2010}-1\right)=0\)
=>\(\frac{x-2014}{2013}+\frac{x-2014}{2012}-\frac{x-2014}{2011}-\frac{x-2014}{2010}=0\)
=.\(\left(x-2014\right)\left(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}\right)=0\)
Do \(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}\ne0\)=> x-2014=0
=> x=2014
d,\(\left(x-7\right)^{x-1}-\left(x-7\right)^{x+11}=0\)
=>\(\left(x-7\right)^{x-1}.\left[1-\left(x-7\right)^{x+12}\right]=0\)
=> \(\orbr{\begin{cases}\left(x-7\right)^{x-1}=0\\1-\left(x-7\right)^{x+12}=0\end{cases}}\)
=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{x+12}=0\end{cases}}\)
=>x=7 hoặc x-7=1 hoặc x+12=0
=> x=7 hoặc x=8 hoặc x=-12
Vậy x=7, x=8, x=-12
k,3x+x2=0
=> x(3+x)=0
=>\(\orbr{\begin{cases}x=0\\3+x=0\end{cases}}\)
=>\(\orbr{\begin{cases}x=0\\x=-3\end{cases}}\)
m, x2-2x-3(x-2)=0
=> x(x-2)-3(x-2)=0
=> (x-3)(x-2)=0
=>\(\orbr{\begin{cases}x-3=0\\x-2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=3\\x=2\end{cases}}\)
*****Chúc bạn học giỏi*****
a,\(\left(x-\frac{2}{3}\right),\left(x+\frac{1}{1}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{2}{3}\\x+\frac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}\\x=\frac{-1}{4}\end{matrix}\right.\)
b,\(\left(x-\frac{2}{3}\right)\left(2x-\frac{3}{4}\right)=\left(3x+\frac{1}{2}\right)\left(x+\frac{2}{3}\right)\)
\(\Leftrightarrow2x^2-\frac{3}{4}x-\frac{4}{3}x+\frac{1}{2}=3x^2+2x+\frac{1}{2}x+\frac{1}{3}\)
\(\Leftrightarrow2x^2-\frac{25}{12}x+\frac{1}{2}=3x^2+\frac{5}{2}x+\frac{1}{3}\)
\(\Leftrightarrow24x^2-25x+6=36x^2+30x+4\)
\(\Leftrightarrow24x^2-25x+6-36x^2-30x-4=0\)
\(\Leftrightarrow-12x^2-55x+2=0\)
\(\Leftrightarrow12x^2+55x-2=0\)
\(\Leftrightarrow x=\frac{-55\pm\sqrt{55^2-4.12\left(-2\right)}}{2.12}\)
\(\Leftrightarrow\frac{-55\pm\sqrt{3025+96}}{24}\)
\(\Leftrightarrow\frac{-55\pm\sqrt{3121}}{24}\)
\(\Leftrightarrow\frac{-55+\sqrt{3121}}{24}\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{-55+\sqrt{3121}}{24}\\\frac{-55-\sqrt{3121}}{24}\end{matrix}\right.\)
a, \(-\frac{5}{7}-\left(\frac{1}{2}-x\right)=-\frac{11}{4}\)
\(\frac{1}{2}-x=\frac{57}{28}\)
\(x=-\frac{43}{28}\)
b, \(\left(2x-1\right)^2-5=20\)
\(\Rightarrow\left(2x-1\right)^2=25\)
\(\Rightarrow2x-1=\pm5\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
b, \(\left(2x-1\right)^2-5=20\)
\(\Rightarrow\left(2x-1\right)^2=25\)
\(\Rightarrow\left(2x-1\right)^2=5^2\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=6\\2x-1=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=7\\2x=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{7}{2}\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy ...
a) \(-\frac{5}{7}-\left(\frac{1}{2}-x\right)=\frac{-11}{4}\)
\(\Rightarrow\left(\frac{1}{2}-x\right)=\left(-\frac{5}{7}\right)+\frac{11}{4}\)
\(\Rightarrow\frac{1}{2}-x=\frac{57}{28}\)
\(\Rightarrow x=\frac{1}{2}-\frac{57}{28}\)
\(\Rightarrow x=-\frac{43}{28}\)
Vậy \(x=-\frac{43}{28}.\)
b) \(\left(2x-1\right)^2-5=20\)
\(\Rightarrow\left(2x-1\right)^2=20+5\)
\(\Rightarrow\left(2x-1\right)^2=25\)
\(\Rightarrow2x-1=\pm5\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=5+1=6\\2x=\left(-5\right)+1=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6:2\\x=\left(-4\right):2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{3;-2\right\}.\)
d) \(\frac{x-6}{4}=\frac{4}{x-6}\)
\(\Rightarrow\left(x-6\right).\left(x-6\right)=4.4\)
\(\Rightarrow\left(x-6\right).\left(x-6\right)=16\)
\(\Rightarrow\left(x-6\right)^2=16\)
\(\Rightarrow x-6=\pm4\)
\(\Rightarrow\left[{}\begin{matrix}x-6=4\\x-6=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4+6\\x=\left(-4\right)+6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=10\\x=2\end{matrix}\right.\)
Vậy \(x\in\left\{10;2\right\}.\)
Chúc bạn học tốt!
\(\frac{-15}{12}x+\frac{3}{2}=\frac{1}{3}x-\frac{1}{2}\)
\(\Leftrightarrow\frac{-15}{12}x=\frac{1}{3}x-\frac{1}{2}-\frac{3}{2}\)
\(\Leftrightarrow\frac{1}{3}x-\frac{1}{2}-\frac{3}{2}=\frac{-15}{12}x\)
\(\Leftrightarrow\frac{1}{3}x-\left(\frac{1}{2}+\frac{3}{2}\right)=\frac{-15}{12}x\)
\(\Leftrightarrow2=\frac{1}{3}x-\frac{-5}{4}x\)
\(\Leftrightarrow x\left(\frac{1}{3}+\frac{5}{4}\right)=2\)
\(\Leftrightarrow\frac{19}{12}x=2\)
\(\Leftrightarrow x=2\times\frac{12}{19}\)
\(\Leftrightarrow x=\frac{24}{19}\)
\(\frac{x+2}{0,5}=\frac{2x+1}{2}\)
\(\Leftrightarrow2\left(x+2\right)=\left(2x+1\right)\times\frac{1}{2}\)
\(\Leftrightarrow2x+4=x+\frac{1}{2}\)
\(\Leftrightarrow2x+4-x=\frac{1}{2}\)
\(\Leftrightarrow2x-x=\frac{1}{2}-4\)
\(\Leftrightarrow x=-3,5\)
\(\Leftrightarrow x=-3,5\)