\(|x+1|+|3x-3|=|4x-2|\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2021

toán lớp 10 hay lớp mấy tui cũng chưa rõ nữa :((

DD
20 tháng 7 2021

\(\left|x+1\right|+\left|3x-3\right|=\left|4x-2\right|\)

Ta có: \(\left|x+1\right|+\left|3x-3\right|\ge\left|x+1+3x-3\right|=\left|4x-2\right|\)

Dấu \(=\)khi \(\left(x+1\right)\left(3x-3\right)\ge0\Leftrightarrow\orbr{\begin{cases}x\ge1\\x\le-1\end{cases}}\)

Vậy nghiệm của phương trình đã cho là \(\orbr{\begin{cases}x\ge1\\x\le-1\end{cases}}\)

18 tháng 4 2016

Đặt \(x+y=t,t\in\left[-2;2\right]\)

Biến đổi được \(P=-2t^3+6t\)

Xét \(f\left(t\right)=-2t^3+6t\) trên \(\left[-2;2\right]\)

Lập bảng biến thiên

Ta có \(P_{Max}=4\) khi t=1

          \(P_{Min}=-4\) khi t= -1

 

 

16 tháng 5 2016

1. \(f\left(x\right)=e^{x^3-3x+3}\) trên đoạn \(\left[0;2\right]\)

Ta có : \(f'\left(x\right)=\left(3x^2-3\right)e^{x^3-3x+3}=0\Leftrightarrow3x^2-3=0\)

                                                           \(\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\notin\left[0;2\right]\\x=1\in\left[0;2\right]\end{array}\right.\)

mà : \(\begin{cases}f\left(0\right)=e^3\\f\left(1\right)=e\\f\left(2\right)=e^5\end{cases}\) \(\Rightarrow\begin{cases}Max_{x\in\left[0;2\right]}f\left(x\right)=e^5;x=1\\Min_{x\in\left[0;2\right]}f\left(x\right)=e;x=2\end{cases}\)

 

2. \(f\left(x\right)=\ln\left(x^2-x+1\right)\) trên đoạn \(\left[1;3\right]\)

Mà \(\begin{cases}f\left(1\right)=0\\f\left(3\right)=\ln7\end{cases}\) \(\Leftrightarrow\begin{cases}Max_{x\in\left[1;3\right]}f\left(x\right)=\ln7;x=3\\Min_{x\in\left[1;3\right]}f\left(x\right)=0;x=1\end{cases}\)

16 tháng 5 2016

1. \(f\left(x\right)=e^{2-3x}\) trên đoạn \(\left[0;2\right]\)

Ta có : 

              \(f'\left(x\right)=-3e^{2-3x}< 0\) với \(x\in R\Rightarrow\) hàm số nghịch biến trên đoạn \(\left[0;2\right]\)

Với \(0\le x\le2\Leftrightarrow f\left(0\right)\ge f\left(x\right)\ge f\left(2\right)\Leftrightarrow e^2\ge f\left(x\right)\ge\frac{1}{e^4}\)

                     \(\Leftrightarrow\begin{cases}Max_{x\in\left[0;2\right]}f\left(x\right)=e^2;x=0\\Min_{x\in\left[0;2\right]}f\left(x\right)=\frac{1}{e^4};x=2\end{cases}\)

 

2. \(f\left(x\right)=e^{\sqrt{1-x^2}}\) trên đoạn \(\left[-1;1\right]\)

Ta có : 

               \(f'\left(x\right)=\frac{-x}{\sqrt{1-x^2}}e^{\sqrt{1-x^2}}=0\Leftrightarrow x=0\in\left[-1;1\right]\)

Mà : \(\begin{cases}f\left(-1\right)=1\\f\left(0\right)=e\\f\left(1\right)=1\end{cases}\) \(\Leftrightarrow\begin{cases}Max_{x\in\left[-1;1\right]}f\left(x\right)=e;x=0\\Min_{x\in\left[-1;1\right]}f\left(x\right)=1;x=\pm1\end{cases}\)

 

18 tháng 4 2016

Hàm số \(f\left(x\right)\) liên tục trên đoạn \(\left[\frac{1}{2};2\right]\)

+)\(f'\left(x\right)=\frac{x^2+2x}{\left(x+1\right)^2};f'\left(x\right)=0\Leftrightarrow x=0\notin\left[\frac{1}{2};2\right]\)hoặc \(x=-2\notin\left[\frac{1}{2};2\right]\)

+) \(f\left(\frac{1}{2}\right)=\frac{7}{6};f\left(2\right)=\frac{7}{3}\)

Vậy \(minf\left(x\right)_{x\in\left[\frac{1}{2};2\right]}=\frac{7}{6}\) khi \(x=\frac{1}{2}\)

       \(maxf\left(x\right)_{x\in\left[\frac{1}{2};2\right]}=\frac{7}{3}\) khi \(x=2\)

16 tháng 5 2016
 
\(f\left(x\right)=\frac{\ln^2x}{x}\) trên đoạn \(\left[1;e^3\right]\)
 
Ta có : 
\(f'\left(x\right)=\frac{2\ln x.\frac{1}{x}x-\ln^2x}{x^2}=\frac{2\ln x-\ln^2x}{x^2}=0\Leftrightarrow2\ln x-\ln^2x=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\ln x=0\\\ln x=2\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=e^2\end{array}\right.\)
Mà :
\(\begin{cases}f\left(1\right)=0\\f\left(e^2\right)=\frac{4}{e^2}\\f\left(e^3\right)=\frac{9}{e^3}\end{cases}\)
\(\Leftrightarrow\begin{cases}Max_{x\in\left[1;e^3\right]}f\left(x\right)=\frac{4}{e^2};x=e^2\\Min_{x\in\left[1;e^3\right]}f\left(x\right)=0;x=1\end{cases}\)
17 tháng 5 2016

Ta có :

\(f'\left(x\right)=2x\ln x-x=x\left(2\ln x-1\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\\ln x=\frac{1}{2}\ln\sqrt{e}\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\notin\left[\frac{1}{e};e^2\right]\\x=\sqrt{e}\in\left[\frac{1}{e};e^2\right]\end{array}\right.\)

Mà : \(\begin{cases}f\left(\frac{1}{e}\right)=-\frac{1}{e^2}\\f\left(e\right)=\frac{e}{2}\\f\left(e^2\right)=2e^4\end{cases}\)  \(\Rightarrow\begin{cases}Max_{x\in\left[\frac{1}{e};e^2\right]}f\left(x\right)=2e^4;x=e^2\\Min_{x\in\left[\frac{1}{e};e^2\right]}f\left(x\right)=\frac{-1}{e^2};x=\frac{1}{e}\end{cases}\)

NV
3 tháng 4 2020

1/ \(f'\left(x\right)=\frac{3\sqrt{x^2+1}-\frac{x\left(3x+1\right)}{\sqrt{x^2+1}}}{x^2+1}=\frac{3\left(x^2+1\right)-3x^2-x}{\left(x^2+1\right)\sqrt{x^2+1}}=\frac{3-x}{\left(x^2+1\right)\sqrt{x^2+1}}\)

Hàm số đồng biến trên \(\left(-\infty;3\right)\) nghịch biến trên \(\left(3;+\infty\right)\)

\(\Rightarrow f\left(x\right)\) đạt GTLN tại \(x=3\)

\(f\left(x\right)_{max}=f\left(3\right)=\frac{10}{\sqrt{10}}=\sqrt{10}\)

2/ \(y'=\frac{\sqrt{x^2+2}-\frac{\left(x-1\right)x}{\sqrt{x^2+2}}}{x^2+2}=\frac{x^2+2-x^2+x}{\left(x^2+2\right)\sqrt{x^2+2}}=\frac{x+2}{\left(x^2+2\right)\sqrt{x^2+2}}\)

\(f'\left(x\right)=0\Rightarrow x=-2\in\left[-3;0\right]\)

\(y\left(-3\right)=-\frac{4\sqrt{11}}{11}\) ; \(y\left(-2\right)=-\frac{\sqrt{6}}{2}\) ; \(y\left(0\right)=-\frac{\sqrt{2}}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}M=-\frac{\sqrt{2}}{2}\\N=-\frac{\sqrt{6}}{2}\end{matrix}\right.\) \(\Rightarrow MN=\frac{\sqrt{12}}{4}=\frac{\sqrt{3}}{2}\)

Tất cả các đáp án đều sai

3/ \(\left\{{}\begin{matrix}\left|x-3\right|\ge0\\\sqrt{x+1}>0\end{matrix}\right.\) \(\Rightarrow f\left(x\right)\ge0\) \(\forall x\Rightarrow N=0\) khi \(x=3\)

- Với \(0\le x< 3\Rightarrow f\left(x\right)=\left(3-x\right)\sqrt{x+1}\)

\(\Rightarrow f'\left(x\right)=-\sqrt{x+1}+\frac{\left(3-x\right)}{2\sqrt{x+1}}=\frac{-2\left(x+1\right)+3-x}{2\sqrt{x+1}}=\frac{-3x+1}{2\sqrt{x+1}}\)

\(f'\left(x\right)=0\Rightarrow x=\frac{1}{3}\)

- Với \(3< x\le4\Rightarrow f\left(x\right)=\left(x-3\right)\sqrt{x+1}\)

\(\Rightarrow f'\left(x\right)=\sqrt{x+1}+\frac{x-3}{2\sqrt{x+1}}=\frac{2\left(x+1\right)+x-3}{2\sqrt{x+1}}=\frac{3x-1}{2\sqrt{x+1}}>0\) \(\forall x>3\)

Ta có: \(f\left(0\right)=3\) ; \(f\left(\frac{1}{3}\right)=\frac{16\sqrt{3}}{9}\) ; \(f\left(4\right)=\sqrt{5}\)

\(\Rightarrow M=\frac{16\sqrt{3}}{9}\Rightarrow M+2N=\frac{16\sqrt{3}}{9}\)

3 tháng 4 2020

Câu 2 hình như câu B mà người ta nói đạt GTLN . GTNN tại M , N nên là 0 x -2 =0

14 tháng 5 2016

Ta có : \(f\left(x\right)=2^{x-1}+2^{3-x}\ge2\sqrt{2^{x-1}.2^{3-x}}=4\)

Dấu bằng xảy ra khi và chỉ khi \(2^{x-1}=2^{3-x}\Leftrightarrow x-1=3-x\)

                                                                \(\Leftrightarrow x=2\)

Vậy Min \(f\left(x\right)=4\) khi x = 2

14 tháng 5 2016

Ta có \(f'\left(x\right)=2^{x-1}\ln2-2^{3-x}\ln2=\left(2^{x-1}-2^{3-x}\right)\ln2=0\)

         \(\Leftrightarrow2^{x-1}=^{3-x}\)

         \(\Leftrightarrow x-1=3-x\)

         \(\Leftrightarrow x=2\)

Mà \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}\left(2^{x-1}+2^{3-x}\right)=+\infty\)

        \(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow+\infty}\left(2^{x-1}+2^{3-x}\right)=+\infty\)

Ta có bảng biến thiên :

x f'(x) f(x) - 8 + 8 2 - 0 + 4 + 8 8 +

Vậy Min f(x) = 4 khi x = 2