\(\dfrac{1}{1\times1981}+\dfrac{1}{2\times1982}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 3 2018

Lời giải:

Ta có \(A=\frac{1}{1.1981}+\frac{1}{2.1982}+...+\frac{1}{25.2005}\)

\(\Rightarrow 1980A=\frac{1980}{1.1981}+\frac{1980}{2.1982}+...+\frac{1980}{25.2005}\)

\(\Leftrightarrow 1980A=\frac{1981-1}{1.1981}+\frac{1982-2}{2.1982}+....+\frac{2005-25}{25.2005}\)

\(\Leftrightarrow 1980A=1-\frac{1}{1981}+\frac{1}{2}-\frac{1}{1982}+...+\frac{1}{25}-\frac{1}{2005}\)

\(1980A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)-\left(\frac{1}{1981}+\frac{1}{1982}+..+\frac{1}{2005}\right)\) (1)

Lại có:

\(25B=\frac{25}{1.26}+\frac{25}{2.27}+...+\frac{25}{1980.2005}\)

\(\Leftrightarrow 25B=\frac{26-1}{1.26}+\frac{27-2}{2.27}+...+\frac{2005-1980}{1980.2005}\)

\(\Leftrightarrow 25B=1-\frac{1}{26}+\frac{1}{2}-\frac{1}{27}+...+\frac{1}{1980}-\frac{1}{2005}\)

\(25B=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1980}\right)-\left(\frac{1}{26}+\frac{1}{27}+....+\frac{1}{2005}\right)\)

\(25B=\left(1+\frac{1}{2}+...+\frac{1}{25}\right)-\left(\frac{1}{1981}+\frac{1}{1982}+...+\frac{1}{2005}\right)\) (2)

Từ \((1); (2)\Rightarrow 1980A=25B\Rightarrow \frac{A}{B}=\frac{25}{1980}=\frac{5}{396}\)

5 tháng 4 2017

Ta có:

\(A=\dfrac{1}{1.1981}+\dfrac{1}{2.1982}+...+\dfrac{1}{n\left(1980+n\right)}+...+\dfrac{1}{25.2005}\)

\(=\dfrac{1}{1980}\left(\dfrac{1981-1}{1.1981}+\dfrac{1982-2}{2.1982}+...+\dfrac{1980+n-n}{n\left(1980+n\right)}+...+\dfrac{2005-25}{25.2005}\right)\)

\(=\dfrac{1}{1980}\left(1-\dfrac{1}{1981}+\dfrac{1}{2}-\dfrac{1}{1982}+...+\dfrac{1}{n}-\dfrac{1}{1980+n}+...+\dfrac{1}{25}-\dfrac{1}{2005}\right)\)

\(=\dfrac{1}{1980}\left[\left(1+\dfrac{1}{2}+...+\dfrac{1}{25}\right)-\left(\dfrac{1}{1981}+\dfrac{1}{1982}+...+\dfrac{1}{2005}\right)\right]\)

Lại có:

\(B=\dfrac{1}{1.26}+\dfrac{1}{2.27}+...+\dfrac{1}{m\left(m+25\right)}+...+\dfrac{1}{1980.2005}\)

\(=\dfrac{1}{25}\left(\dfrac{26-1}{1.26}+\dfrac{27-2}{2.27}+...+\dfrac{25+m-m}{m\left(25+m\right)}+...+\dfrac{2005-1980}{1980.2005}\right)\)

\(=\dfrac{1}{25}\left(\dfrac{1}{1}-\dfrac{1}{26}+\dfrac{1}{2}-\dfrac{1}{27}+...+\dfrac{1}{m}-\dfrac{1}{25+m}+...+\dfrac{1}{1980}-\dfrac{1}{2005}\right)\)

\(=\dfrac{1}{25}\left[\left(\dfrac{1}{1}+\dfrac{1}{2}+...+\dfrac{1}{1980}\right)-\left(\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{2005}\right)\right]\)

\(=\dfrac{1}{25}\left[\left(1+\dfrac{1}{2}+...+\dfrac{1}{25}\right)-\left(\dfrac{1}{1981}+\dfrac{1}{1982}+...+\dfrac{1}{2005}\right)\right]\)

\(\Rightarrow\dfrac{A}{B}=\dfrac{\dfrac{1}{1980}}{\dfrac{1}{25}}=\dfrac{5}{396}\)

Vậy tỉ số của \(A\)\(B\)\(\dfrac{5}{396}\)

30 tháng 11 2019

này này là bạn j ơi bạn j ơi

này này là cho mk hỏi tẹo dc ko

cái chô bạn rút gọn B ik dòng thứ 4 xuống dòng thứ 5 bạn làm kiểu j vậy giải thích rõ hook mik dc ko thanks nhìu,@Vũ Minh Tuấn@Hoang Hung Quan,@Băng Băng 2k6,

11 tháng 7 2017

2) a) \(\left(x+\dfrac{4}{5}\right)^2=\dfrac{9}{25}\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{4}{5}=\dfrac{3}{5}\\x+\dfrac{4}{5}=-\dfrac{3}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-1}{5}\\x=\dfrac{-7}{5}\end{matrix}\right.\) vậy \(x=\dfrac{-1}{5};x=\dfrac{-7}{5}\)

b) \(\left|x-\dfrac{3}{7}\right|=-2\) vì giá trị đối không âm được nên phương trình này vô nghiệm

c) điều kiện : \(x\ge-7\) \(\sqrt{x+7}-2=4\Leftrightarrow\sqrt{x+7}=4+2=6\)

\(\Leftrightarrow x+7=6^2=36\Leftrightarrow x=36-7=29\) vậy \(x=29\)

d) \(x^2-\dfrac{7}{9}x=0\Leftrightarrow x\left(x-\dfrac{7}{9}\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-\dfrac{7}{9}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=\dfrac{7}{9}\end{matrix}\right.\) vậy \(x=0;x=\dfrac{7}{9}\)

11 tháng 7 2017

1) tìm GTNN

a) \(B=\left|x-2017\right|+\left|x-20\right|\)

B \(\ge\left|x-2017-x+20\right|=\left|-1997\right|=1997\)

Dấu " = " xảy ra khi và chỉ khi 20 \(\le x\le2017\)

Vậy MinB = 1997 khi 20 \(\le x\le2017\)

b) \(C=\left|x-3\right|+\left|x-5\right|\)

\(C\ge\left|x-3-x+5\right|=\left|2\right|=2\)

Dấu " = " xảy ra khi 3 \(\le x\le5\)

Vậ MinC = 2 khi và chỉ khi 3 \(\le x\le5\)

c) \(C=\left|x^2+4\right|+3\)

Ta thấy \(x^2+4\ge0\) với mọi x

nên \(\left|x^2+4\right|+3=x^2+4+3=x^2+7\)\(\ge\) 7

Dấu " =" xảy ra khi x = 0

MinC = 7 khi và chỉ khi x = 0

27 tháng 11 2022

a: \(=\left(\dfrac{1}{4}+\dfrac{3}{4}\right)\cdot\dfrac{18}{5}-\dfrac{6}{5}:\dfrac{-9}{5}+4\)

\(=\dfrac{18}{5}-\dfrac{6}{5}\cdot\dfrac{-5}{9}+4\)

\(=\dfrac{18}{5}+\dfrac{2}{3}+4\)

\(=\dfrac{124}{15}\)

b: \(=\dfrac{9}{25}\cdot\left(\dfrac{3}{5}-\dfrac{1}{5}+\dfrac{1}{2}\right)-\dfrac{3}{8}:\dfrac{9}{8}\)

\(=\dfrac{9}{25}\cdot\dfrac{4}{10}-\dfrac{1}{3}\)

\(=-\dfrac{71}{375}\)

c: \(=\dfrac{7}{10}:\dfrac{4}{5}+\dfrac{2}{9}:\dfrac{5}{9}+\dfrac{1}{8}\)

\(=\dfrac{7}{10}\cdot\dfrac{5}{4}+\dfrac{2}{5}+\dfrac{1}{8}\)

=1+2/5

=7/5

d: \(=\dfrac{3}{7}\left(19+\dfrac{1}{3}-33-\dfrac{1}{3}\right)-\dfrac{2}{7}=\dfrac{3}{7}\cdot\left(-14\right)-\dfrac{2}{7}=-6-\dfrac{2}{7}=\dfrac{-44}{7}\)

e: \(=\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{-2^{11}\cdot3^{11}-2^{12}\cdot3^{12}}\)

\(=\dfrac{2^{12}\cdot3^{10}\cdot6}{-2^{11}\cdot3^{11}\left(1+2\cdot3\right)}=-\dfrac{2^{13}\cdot3^{11}}{2^{11}\cdot3^{11}\cdot7}=\dfrac{-4}{7}\)

13 tháng 12 2017

giải nè

Image

13 tháng 12 2017

được chưa cho mình k

21 tháng 6 2017

1)

a) \(0,25^x\cdot12^x=243\)

\(\Leftrightarrow\left(0,25\cdot12\right)^x=3^5\)

\(\Leftrightarrow3^x=3^5\)

\(\Leftrightarrow x=5\)

Vậy \(x=5\)

b) \(38^y:19^y=512\)

\(\Leftrightarrow2y\cdot y=512\)

\(\Leftrightarrow2y^2=512\)

\(\Leftrightarrow y^2=256\)

\(\Leftrightarrow\left[{}\begin{matrix}y=16\\y=-16\end{matrix}\right.\)

Vậy \(y_1=-16;y_2=16\)

2)

a) \(3^x+3^{x+2}=2430\)

\(\Leftrightarrow\left(1+3^2\right)\cdot3^x=2430\)

\(\Leftrightarrow\left(1+9\right)\cdot3^x=2430\)

\(\Leftrightarrow10\cdot3^x=2430\)

\(\Leftrightarrow3^x=243\)

\(\Leftrightarrow3^x=3^5\)

\(\Leftrightarrow x=5\)

Vậy \(x=5\)

b) \(2^{x+3}-2^x=224\)

\(\Leftrightarrow\left(2^3-1\right)\cdot2^x=224\)

\(\Leftrightarrow\left(8-1\right)\cdot2^x=224\)

\(\Leftrightarrow7\cdot2^x=224\)

\(\Leftrightarrow2^x=32\)

\(\Leftrightarrow2^x=2^5\)

\(\Leftrightarrow x=5\)

Vậy \(x=5\)

3)

a) \(\left(x-\dfrac{1}{4}\right)^2=\dfrac{4}{9}\)

\(\Leftrightarrow x-\dfrac{1}{4}=\pm\dfrac{2}{3}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{4}=\dfrac{2}{3}\\x-\dfrac{1}{4}=-\dfrac{2}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}+\dfrac{1}{4}\\x=-\dfrac{2}{3}+\dfrac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{11}{12}\\x=-\dfrac{5}{12}\end{matrix}\right.\)

Vậy \(x_1=\dfrac{11}{12};x_2=-\dfrac{5}{12}\)

b) \(\left(x+0,7\right)^3=-27\)

\(\Leftrightarrow\left(x+\dfrac{3}{10}\right)^3=\left(-3\right)^3\)

\(\Leftrightarrow x+\dfrac{3}{10}=-3\)

\(\Leftrightarrow x=-3-\dfrac{3}{10}\)

\(\Leftrightarrow x=-\dfrac{37}{10}\)

Vậy \(x=-\dfrac{37}{10}\)

4)

a) \(\left(\dfrac{2}{5}-3x\right)^2=\dfrac{9}{25}\)

\(\Leftrightarrow\dfrac{2}{5}-3x=\pm\dfrac{3}{5}\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{2}{5}-3x=\dfrac{3}{5}\\\dfrac{2}{5}-3x=-\dfrac{3}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=-\dfrac{1}{5}\\3x=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{15}\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy \(x_1=-\dfrac{1}{15};x_2=\dfrac{1}{3}\)

b) \(\left(\dfrac{2}{3}x-\dfrac{1}{3}\right)^5=\dfrac{1}{243}\)

\(\Leftrightarrow\dfrac{2}{3}x-\dfrac{1}{3}=\dfrac{1}{3}\)

\(\Leftrightarrow2x-1=1\)

\(\Leftrightarrow2x=1+1\)

\(\Leftrightarrow2x=2\)

\(\Leftrightarrow x=1\)

Vậy \(x=1\)

21 tháng 6 2017

1. a) \(0,25^x.12^x=243\)

\(\Rightarrow\left(0,25.12\right)^x=243\)

\(\Rightarrow3^x=3^5\)

\(\Rightarrow x=5\)

Vậy \(x=5.\)

b) \(38^y:19^y=512\)

\(\Rightarrow\left(38:19\right)^y=512\)

\(\Rightarrow2^y=2^9\)

\(\Rightarrow y=9\)

Vậy \(y=9.\)

2) a) \(3^x+3^{x+2}=2430\)

\(\Rightarrow3^x\left(1+9\right)=2430\)

\(\Rightarrow3^x=243=3^5\)

\(\Rightarrow x=5\)

Vậy x=5.

b) \(2^{x+3}-2^x=224\)

\(\Rightarrow2^x\left(8-1\right)=224\)

\(\Rightarrow2^x=32=2^5\)

\(\Rightarrow x=5\)

Vậy x=5.

Bài 3: dễ tự làm.

10 tháng 9 2017

a) \(\left(\dfrac{1}{3}\right)^m=\dfrac{1}{81}\)

\(\Rightarrow\dfrac{1^m}{3^m}=\dfrac{1}{81}\)

\(\Rightarrow\dfrac{1}{3^m}=\dfrac{1}{3^4}\)

\(\Rightarrow m=4\)

b) \(\left(\dfrac{3}{5}\right)^n=\left(\dfrac{9}{25}\right)^5\)

\(\Rightarrow\left(\dfrac{3}{5}\right)^n=\left[\left(\dfrac{3}{5}\right)^2\right]^5\)

\(\Rightarrow\left(\dfrac{3}{5}\right)^n=\left(\dfrac{3}{5}\right)^{10}\)

\(\Rightarrow n=10\)

c) \(\left(-0,25\right)^p=\dfrac{1}{256}\)

\(\Rightarrow\left(\dfrac{-1}{4}\right)^p=\dfrac{1}{256}\)

\(\Rightarrow\left(\dfrac{-1}{4}\right)^p=\dfrac{1}{4^4}\)

\(\Rightarrow\left(\dfrac{-1}{4}\right)^p=\left(\dfrac{1}{4}\right)^4\)

\(\Rightarrow p=4\)

16 tháng 9 2017

cái này mà bạn ko biết làm á, bấm máy tính tạch tạch mấy phát là ra mà

17 tháng 9 2017

lười làm nên nhờ mấy bạn giải dùm

Toàn câu dễ nên bạn tự làm đi.

Trong lúc bạn đánh xong bài này thì bạn có thể làm xong rồi đó.

Đừng có ỷ lại vào người khác ,động não lên.

24 tháng 7 2017

\(A=\left(-1\right)^{2n}.\left(-1\right)^n.\left(-1\right)^{n+1}\)

\(A=\left(-1\right)^{2n+n+n+1}\)

\(A=\left(-1\right)^{4n+1}\)

\(B=\left(10000-1^2\right).\left(10000-2^2\right)...\left(10000-1000^2\right)\)

\(B=\left(10000-1^2\right)\left(10000-2^2\right)...\left(10000-100^2\right)...\left(10000-1000^2\right)\)

\(B=\left(10000-1^2\right)\left(10000-2^2\right)...\left(10000-10000\right)...\left(10000-1000^2\right)\)

\(B=\left(10000-1^2\right)\left(10000-2^2\right)...0\left(10000-1000^2\right)\)

\(B=0\)

\(C=\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)...\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)

\(C=\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)...\left(\dfrac{1}{125}-\dfrac{1}{5^3}\right)...\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)

\(C=\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)...0....\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)

\(C=0\)

\(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)...\left(1000-10^3\right)}\)

\(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)...\left(1000-1000\right)}\)

\(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)...0}\)

\(D=1999^0\)

\(D=1\)