Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a\left(\frac{1}{2}-\frac{1}{4}+....+\frac{1}{8}-\frac{1}{10}\right).y=\frac{1}{3}\)
\(\left(\frac{1}{2}-\frac{1}{10}\right).y=\frac{1}{3}\)
\(\frac{2}{5}.y=\frac{1}{3}\)
\(y=\frac{1}{3}:\frac{2}{5}\)
\(y=\frac{5}{6}\)
\(b,\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{9}-\frac{1}{11}\right).y=\frac{2}{3}\)
\(\left(\frac{1}{1}-\frac{1}{11}\right).y=\frac{2}{3}\)
\(\frac{10}{11}.y=\frac{2}{3}\)
\(y=\frac{2}{3}:\frac{10}{11}\)
\(y=\frac{22}{30}\)
a, \(\left(4\dfrac{1}{9}+3\dfrac{1}{4}\right).2\dfrac{1}{4}+2\dfrac{3}{4}\)
\(=\left(\dfrac{37}{9}+\dfrac{13}{4}\right).\dfrac{9}{4}+\dfrac{11}{4}\)
\(=\dfrac{265}{36}.\dfrac{9}{4}+\dfrac{11}{4}\)
\(=\dfrac{265}{16}+\dfrac{11}{4}\)
\(=\dfrac{309}{16}\)
b, \(\dfrac{9}{23}.\dfrac{5}{8}+\dfrac{9}{23}.\dfrac{3}{8}-\dfrac{9}{23}\)
\(=\dfrac{45}{184}+\dfrac{27}{184}-\dfrac{9}{23}\)
\(=\dfrac{9}{23}-\dfrac{9}{23}\)
\(=\dfrac{1}{1}\)
c, \(1+\left(\dfrac{9}{10}-\dfrac{4}{5}\right)\div3\dfrac{1}{6}\)
\(=1+\left(\dfrac{9}{10}-\dfrac{4}{5}\right)\div\dfrac{19}{6}\)
\(=1+\dfrac{1}{10}\div\dfrac{19}{6}\)
\(=1+\dfrac{3}{95}\)
\(=1\dfrac{3}{95}\)
d, ???
ta có:\(A=\frac{8^9+12}{8^9+7}=\frac{8^9+7+5}{8^9+7}=\frac{8^9+7}{8^9+7}+\frac{5}{8^9+7}=1+\frac{5}{8^9+7}\)
\(B=\frac{8^{10}+4}{8^{10}-1}=\frac{8^{10}-1+5}{8^{10}-1}=\frac{8^{10}-1}{8^{10}-1}+\frac{5}{8^{10}-1}=1+\frac{5}{8^{10}-1}\)
vì 810-1>89+7
\(\Rightarrow\frac{5}{8^{10}-1}<\frac{5}{8^9+7}\)
\(\Rightarrow1+\frac{5}{8^{10}-1}<1+\frac{5}{8^9+7}\)
=>A<B