K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 1

Đặt \(cosx=t\in\left[-1;1\right]\)

\(\Rightarrow6t^2+\left(9m-7\right)t-6m+2=0\)

\(\Leftrightarrow6t^2-7t+2+9mt-6m=0\)

\(\Leftrightarrow\left(2t-1\right)\left(3t-2\right)+3m\left(3t-2\right)=0\)

\(\Leftrightarrow\left(3t-2\right)\left(2t+3m-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=\dfrac{2}{3}\\cosx=\dfrac{-3m+1}{2}\end{matrix}\right.\) 

(Chà tới đây mới thấy ko cần đặt ẩn phụ, nhìn con số 9m và 6m to 1 cách vô lý đã nghi nghi có gì đó bất thường trong nghiệm :D)

Pt \(cosx=\dfrac{2}{3}\) cho 1 nghiệm thuộc \(\left(0;\dfrac{\pi}{2}\right)\)

Để pt có 3 nghiệm pb thì \(cosx=\dfrac{-3m+1}{2}\) cho 2 nghiệm pb thuộc khoảng đã cho

Từ đường tròn lượng giác ta dễ dàng suy ra: \(-1< \dfrac{-2m+1}{2}< 0\)

 

22 tháng 1

Anh ơi! Em thấy đặt ẩn phụ gọn hơn so với cosx. Theo anh không cần đặt ẩn phụ sẽ như nào vậy ạ anh! 

10 tháng 10 2023

loading...  loading...  loading...  

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

Không có đáp án đúng. Theo đáp án thì $m=0$ thì $\sin 2x=2m$ có 2 nghiệm pb thuộc $[0;\pi]$

Tức là $\sin 2x=0$ có 2 nghiệm pb $[0;\pi]$. Mà pt này có 3 nghiệm lận:

$x=0$

$x=\frac{1}{2}\pi$

$x=\pi$

 

loading...  loading...  loading...  

10 tháng 10 2021

Tham khảo:

Do đó:

NV
7 tháng 5 2023

Đặt \(\dfrac{\pi}{3}+mx=t\Rightarrow mx=t-\dfrac{\pi}{3}\)

\(\Rightarrow\dfrac{\pi}{6}-mx=\dfrac{\pi}{6}-\left(t-\dfrac{\pi}{3}\right)=\dfrac{\pi}{2}-t\)

Pt trở thành:

\(cos^2t+4cos\left(\dfrac{\pi}{2}-t\right)=4\)

\(\Leftrightarrow1-sin^2t+4sint=4\)

\(\Leftrightarrow sin^2t-4sint+3=0\Rightarrow\left[{}\begin{matrix}sint=1\\sint=3>1\end{matrix}\right.\)

\(\Rightarrow t=\dfrac{\pi}{2}+k2\pi\)

\(\Rightarrow\dfrac{\pi}{3}+mx=\dfrac{\pi}{2}+k2\pi\)

\(\Leftrightarrow mx=\dfrac{\pi}{6}+k2\pi\)

\(\Rightarrow x=\dfrac{1}{m}\left(\dfrac{\pi}{6}+k2\pi\right)\)

\(0< x< 1\Rightarrow0< \dfrac{1}{m}\left(\dfrac{\pi}{6}+k2\pi\right)< 1\Rightarrow-\dfrac{1}{12}< k< \dfrac{m-\dfrac{\pi}{6}}{2\pi}\) (1)

Pt có 4 nghiệm pb trên đoạn đã cho khi có 4 giá trị k nguyên thỏa mãn (1)

\(\Rightarrow k=\left\{0;1;2;3\right\}\)

\(\Rightarrow3< \dfrac{m-\dfrac{\pi}{6}}{2\pi}\le4\)

\(\Rightarrow\dfrac{37\pi}{6}< m\le\dfrac{49\pi}{6}\)

 

NV
7 tháng 5 2023

Nghiệm trên \(\left(0;\pi\right)\) hay (0;1) nhỉ?

Thực ra 2 cái này cũng ko khác gì nhau về mặt pp giải toán nhưng mà \(\left(0;\pi\right)\) thì tính toán đẹp hơn \(\left(0;1\right)\) nhiều