Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^4+2n^3+2n^2+n+7=k^2\)
\(\Leftrightarrow\left(n^2+n\right)^2+\left(n^2+n\right)+7=k^2\)
\(\Leftrightarrow4\left(n^2+n\right)^2+4\left(n^2+n\right)+1+27=4k^2\)
\(\Leftrightarrow\left(2n^2+2n+1\right)^2-4k^2=-27\)
\(\Leftrightarrow\left(2n^2+2n+1-2k\right)\left(2n^2+2n+1+2k\right)=-27\)
Làm nôt
Có: 2n+2017=a^2 (1) (a,b ∈N)
n+2019=b^2 (2)
Từ (1)⇒ a lẻ ⇒ a=2k+1 (k∈N)
(1) trở thành 2n+2017=(2k+1)^2
⇔ n+1008=2k(k+1)
Vì k(k+1) là tích 2 số tự nhiên liên tiếp ⇒ k(k+1) chia hết cho 2
⇒ n+1008 chia hết cho 4 ⇒n chia hết cho 4 (vì 1008 chia hết cho 4)
Vì n chia hết cho 4 ⇒ b lẻ ⇒b=2h+1 (h∈N)
(2) trở thành n+2019=(2h+1)^2
⇔n+2018=4(h^2+h) (3)
Có: n chia hết cho 4, 2018 không chia hết cho 4
⇒ n+2018 không chia hết cho 4
mà 4(h^2+h) chia hết cho 4
Nên (3) vô lý
Vậy không tồn tại n thỏa mãn
1. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath
b1,
\(n^4< n^4+n^3+n^2+n+1\le n^4+4n^3+6n^2+4n+1=\left(n+1\right)^4\)
=>n4+n3+n2+n+1=(n+1)4<=>n=0
nhầm sai rồi nếu n^4+n^3+n^2+n+1 là scp thì mới chặn đc nhưng ở đây lại ko phải
Giả sử có số \(n\) thoả đề. Khi đó do \(a\) chính phương nên \(4a\) cũng chính phương.
Và \(4a=4n^4+8n^3+8n^2+4n+28=\left(2n^2+2n+1\right)^2+27\)
Như vậy sẽ có 2 số chính phương lệch nhau \(27\) đơn vị là số \(4a\) và \(\left(2n^2+2n+1\right)^2\).
Ta sẽ tìm 2 số chính phương như thế.
-----
Ta sẽ giải pt nghiệm nguyên dương \(m^2-n^2=27=1.27=3.9\)
Ta có bảng:
------
Theo bảng trên thì số \(\left(2n^2+2n+1\right)^2\) (số chính phương nhỏ hơn) sẽ nhận giá trị \(169\) và \(9\).
Đến đây bạn tự giải tiếp nha bạn.
Đáp số: \(2;-3\)
chịu rồi
tk nhé
thanks
2222